python-peerplays Documentation
Release 0.1

Fabian Schuh

Mar 20, 2023

Contents

7

About this Library
Quickstart

General

Command Line Tool
Packages

Tutorials

Indices and tables

Python Module Index

Index

13

15

115

127

129

131

python-peerplays Documentation, Release 0.1

PeerPlays is a blockchain-based autonomous company (i.e. a DAC) that offers gaming and tournaments on a
blockchain.

It is based on Graphene (tm), a blockchain technology stack (i.e. software) that allows for fast transactions and a

scalable blockchain solution. In case of PeerPlays, it comes with decentralized gaming engine and allows setting up
and running tournaments of any kind.

Contents 1

python-peerplays Documentation, Release 0.1

2 Contents

CHAPTER 1

About this Library

The purpose of pypeerplays is to simplify development of products and services that use the PeerPlays blockchain. It
comes with

* it’s own (bip32-encrypted) wallet

* RPC interface for the Blockchain backend

* JSON-based blockchain objects (accounts, blocks, events, etc)
* asimple to use yet powerful API

* transaction construction and signing

* push notification API

e and more

python-peerplays Documentation, Release 0.1

4 Chapter 1. About this Library

CHAPTER 2

Quickstart

Note:

All methods that construct and sign a transaction can be given the account= parameter to identify the user that
is going to affected by this transaction, e.g.:

¢ the source account in a transfer
* the accout that buys/sells an asset in the exchange
¢ the account whos collateral will be modified

Important, If no account is given, then the default_account according to the settings in config is used
instead.

from peerplays import PeerPlays

peerplays = PeerPlays|()

peerplays.wallet.unlock ("wallet-passphrase”)

peerplays.transfer ("<to>", "<amount>", "<asset>", ["<memo>"], account="<from>")

from peerplays.blockchain import Blockchain
blockchain = Blockchain ()
for op in Blockchain.ops{():

print (op)

from peerplays.block import Block
print (Block (1))

from peerplays.account import Account
account = Account ("init0")
print (account .balances)
print (account.openorders)
for h in account.history():
print (h)

python-peerplays Documentation, Release 0.1

6 Chapter 2. Quickstart

CHAPTER 3

General

3.1 Installation

3.1.1 Installation

Install with pip:

$ sudo apt-get install libffi-dev libssl-dev python-dev
$ pip3 install peerplays

Manual installation:

$ git clone https://github.com/xeroc/python-peerplays/
$ cd python-peerplays
$ python3 setup.py install --user

3.1.2 Upgrade

’$ pip install --user —--upgrade

3.2 Quickstart

under construction

python-peerplays Documentation, Release 0.1

3.3 Tutorials

3.3.1 Bundle Many Operations

With PeerPlays, you can bundle multiple operations into a single transactions. This can be used to do a multi-send
(one sender, multiple receivers), but it also allows to use any other kind of operation. The advantage here is that the
user can be sure that the operations are executed in the same order as they are added to the transaction.

from pprint import pprint
from peerplays import PeerPlays

testnet = PeerPlays (
"wss://node.testnet.peerplays.eu",
nobroadcast=True,
bundle=True,

testnet.wallet.unlock ("supersecret")

testnet.transfer ("inito", 1, "TEST", account="xeroc")
testnet.transfer (1)
testnet.transfer ("init2", 1, "TEST", account="xeroc")

(1)

testnet.transfer ("init3", , "TEST", account="xeroc"

"initl™", , "TEST", account="xeroc"

pprint (testnet.broadcast ())

3.3.2 Proposing a Transaction

In PeerPlays, you can propose a transactions to any account. This is used to facilitate on-chain multisig transactions.
With python-peerplays, you can do this simply by using the proposer attribute:

from pprint import pprint
from peerplays import PeerPlays

testnet = PeerPlays (
"wss://node.testnet.peerplays.eu",
proposer="xeroc"

)

testnet.wallet.unlock ("supersecret™)

pprint (testnet.transfer ("init0", 1, "TEST", account="xeroc"))

3.3.3 Simple Sell Script

from peerplays import PeerPlays
from peerplays.market import Market
from peerplays.price import Price
from peerplays.amount import Amount

#

Instanciate PeerPlays (pick network via API node)

#

peerplays = PeerPlays (
"wss://node.testnet.peerplays.eu",

(continues on next page)

8 Chapter 3. General

python-peerplays Documentation, Release 0.1

(continued from previous page)

nobroadcast=True # <<-—— set this to False when you want to fire!
)
#
Unlock the Wallet
#

peerplays.wallet.unlock ("<supersecret>")

#

This defines the market we are looking at.

The first asset in the first argument is the *quotex*
Sell and buy calls always refer to the x*quotex

#
market = Market (
"GOLD:USD",
peerplays_instance=peerplays
)
#
Sell an asset for a price with amount (quote)
#

print (market.sell (
Price(100.0, "USD/GOLD"),
Amount ("0.01 GOLD™)

))

3.3.4 Sell at a timely rate

import threading

from peerplays import PeerPlays
from peerplays.market import Market
from peerplays.price import Price
from peerplays.amount import Amount

def sell():
"mno Sell an asset for a price with amount (quote)

mmn

print (market.sell (
Price(100.0, "USD/GOLD"),
Amount ("0.01 GOLD")

))

threading.Timer (60, sell).start()

if name == "_ _main_ ":

Instanciate PeerPlays (pick network via API node)

W W %|

peerplays = PeerPlays (
"wss://node.testnet.peerplays.eu",
nobroadcast=True # <<-—— set this to False when you want to fire!

(continues on next page)

3.3. Tutorials 9

python-peerplays Documentation, Release 0.1

(continued from previous page)

#

Unlock the wallet

#

peerplays.wallet.unlock ("<supersecret>")

#
This defines the market we are looking at.
The first asset in the first argument is the x*quotex*
Sell and buy calls always refer to the xquotex
#
market = Market (
"GOLD:USD",
peerplays_instance=peerplays

)

sell ()

3.4 Configuration

The pypeerplays library comes with its own local configuration database that stores information like
* API node URL
¢ default account name
* the encrypted master password

and potentially more.

You can access those variables like a regular dictionary by using

from peerplays import PeerPlays
peerplays = PeerPlays ()
print (peerplays.config.items())

Keys can be added and changed like they are for regular dictionaries.

3.5 Contributing to python-peerplays

We welcome your contributions to our project.

3.5.1 Repository

The main repository of python-peerplays is currently located at:
https://github.com/peerplays-network/python-peerplays

3.5.2 Flow

This project makes heavy use of git flow. If you are not familiar with it, then the most important thing for your to
understand is that:

10 Chapter 3. General

https://github.com/peerplays-network/python-peerplays
http://nvie.com/posts/a-successful-git-branching-model/

python-peerplays Documentation, Release 0.1

pull requests need to be made against the develop branch

3.5.3 How to Contribute
0. Familiarize yourself with contributing on github <https://guides.github.com/activities/contributing-to-open-
source/>
1. Fork or branch from the master.
Create commits following the commit style

Start a pull request to the master branch

Rl

Wait for a @xeroc or another member to review

3.5.4 Issues

Feel free to submit issues and enhancement requests.

3.5.5 Contributing
Please refer to each project’s style guidelines and guidelines for submitting patches and additions. In general, we
follow the “fork-and-pull” Git workflow.

1. Fork the repo on GitHub

2. Clone the project to your own machine

3. Commit changes to your own branch

4. Push your work back up to your fork

5. Submit a Pull request so that we can review your changes

NOTE: Be sure to merge the latest from “upstream” before making a pull request!

3.5.6 Copyright and Licensing

This library is open sources under the MIT license. We require your to release your code under that license as well.

3.6 Support and Questions

We have currently not setup a distinct channel for development around pypeerplays. However, many of the contributors
are frequently reading through these channels:

* https://peerplaystalk.org
* https://t.me/PeerPlaysDEX

3.6. Support and Questions 11

https://peerplaystalk.org
https://t.me/PeerPlaysDEX

python-peerplays Documentation, Release 0.1

3.7 Stati

List of statis and types used within PeerPlays:

class BetType (Enum) :
options = [
llbaCkH,
"lay",

class BettingMarketResolution (Enum) :
options = [
"win",
"not_win",
"cancel",
"BETTING_MARKET_RESOLUTION_COUNT",

class BettingMarketStatus (Enum) :
options = [

"unresolved", # no grading has been published for this betting market
"frozen", # bets are suspended, no bets allowed
"graded", # grading of win or not_win has been published
"canceled", # the betting market is canceled, no further bets are allowed
"settled", # the betting market has been paid out

"BETTING_MARKET_STATUS_COUNT"

class BettingMarketGroupStatus (Enum) :

options = [
"upcoming", # betting markets are accepting bets, will never go "in play"
"in_play", # betting markets are delaying bets
"closed", # betting markets are no longer accepting bets
"graded", # witnesses have published win/not win for the betting markets
"re_grading", # initial win/not win grading has been challenged
"settled", # paid out
"frozen", # betting markets are not accepting bets
"canceled", # canceled

"BETTING_MARKET_GROUP_STATUS_COUNT"

class EventStatus (Enum) :

options = [

"upcoming", # Event has not started yet, betting is allowed

"in_progress", # Event is in progress, if "in-play" betting is enabled, bets_
—will be delayed

"frozen", # Betting is temporarily disabled

"finished", # Event has finished, no more betting allowed

"canceled", # Event has been canceled, all betting markets have been,,
—canceled

"settled", # All betting markets have been paid out

"STATUS_COUNT"

12 Chapter 3. General

CHAPTER 4

Command Line Tool

4.1 “peerplays” command line tool

The peerplays command line tool comes with the following features:

$ peerplays —-help

Usage: peerplays [OPTIONS] COMMAND

Options:
-—-debug / —--no-debug

--node TEXT

—-—rpcuser TEXT
——rpcpassword TEXT

[ARGS] ...

Enable/Disable Debugging (no-broadcasting
mode)

Websocket URL for public Peerplays API
(default: "wss://t.b.d./™)

Websocket user if authentication is required
Websocket password if authentication is

required
-d, —-—-nobroadcast / —--broadcast
Do not broadcast anything
-x, —-unsigned / --signed Do not try to sign the transaction
-e, ——expires INTEGER Expiration time in seconds (defaults to 30)
-v, ——-verbose INTEGER Verbosity (0-15)
—--version Show version
—-help Show this message and exit.
Commands :
addkey Add a private key to the wallet
allow Add a key/account to an account's permission
approvecommittee Approve committee member (s)
approveproposal Approve a proposal
approvewitness Approve witness (es)
balance Show Account balances
broadcast Broadcast a json-formatted transaction
changewalletpassphrase Change the wallet passphrase
configuration Show configuration variables

(continues on next page)

13

python-peerplays Documentation, Release 0.1

(continued from previous page)

delkey

disallow
disapprovecommittee
disapproveproposal
disapprovewitness
getkey

history

info

listaccounts
listkeys
newaccount
permissions
randomwi £

set

sign

transfer

upgrade

Delete a private key from the wallet
Remove a key/account from an account's...
Disapprove committee member (s)

Disapprove a proposal

Disapprove witness (es)

Obtain private key in WIF format

Show history of an account

Obtain all kinds of information

List accounts (for the connected network)
List all keys (for all networks)

Create a new account

Show permissions of an account

Obtain a random private/public key pair
Set configuration key/value pair

Sign a Jjson-formatted transaction
Transfer assets

Upgrade Account

Further help can be obtained via:

$ peerplays <command> —--help

14

Chapter 4. Command Line Tool

CHAPTER B

Packages

5.1 peerplays

5.1.1 peerplays package
Subpackages

peerplays.cli package
Submodules
peerplays.cli.account module
peerplays.cli.asset module
peerplays.cli.bookie module
peerplays.cli.bos module
peerplays.cli.cli module
peerplays.cli.committee module
peerplays.cli.decorators module

peerplays.cli.decorators.chain (f)
This decorator allows you to access ctx . peerplays which is an instance of PeerPlays.

15

python-peerplays Documentation, Release 0.1

peerplays.cli.decorators.configfile (f)
This decorator will parse a configuration file in YAML format and store the dictionary in ctx.blockchain.
config

peerplays.cli.decorators.customchain (**kwargsChain)
This decorator allows you to access ctx .peerplays which is an instance of Peerplays. But in contrast to
@chain, this is a decorator that expects parameters that are directed right to PeerPlays ().

. code-block::python

@main.command() @click.option("—worker”, default=None) @click.pass_context @custom-
chain(foo="bar”’) @unlock def list(ctx, worker):

print(ctx.obj)

peerplays.cli.decorators.offline (f)
This decorator allows you to access ctx.peerplays which is an instance of PeerPlays with
offline=True.

peerplays.cli.decorators.offlineChain (f)
This decorator allows you to access ctx.peerplays which is an instance of PeerPlays with
offline=True.

peerplays.cli.decorators.online (f)
This decorator allows you to access ctx . peerplays which is an instance of PeerPlays.

peerplays.cli.decorators.onlineChain (f)
This decorator allows you to access ctx . peerplays which is an instance of PeerPlays.

peerplays.cli.decorators.unlock (f)
This decorator will unlock the wallet by either asking for a passphrase or taking the environmental variable
UNLOCK

peerplays.cli.decorators.unlockWallet (f)
This decorator will unlock the wallet by either asking for a passphrase or taking the environmental variable
UNLOCK

peerplays.cli.decorators.verbose (f)
Add verbose flags and add logging handlers

peerplays.cli.info module

peerplays.cli.main module

peerplays.cli.message module

peerplays.cli.proposal module

peerplays.cli.rpc module

peerplays.cli.ui module

peerplays.cli.ui.get_terminal (text="Password’, confirm=False, allowedempty=False)

peerplays.cli.ui.maplist2dict (dlist)
Convert a list of tuples into a dictionary

peerplays.cli.ui.pprintOperation (op)

16 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

peerplays.cli.ui.pretty_ print (o, *args, **kwargs)
peerplays.cli.uil.print_permissions (account)

peerplays.cli.ul.print_version (ctx, param, value)

peerplays.cli.wallet module
peerplays.cli.withess module
Module contents

Submodules

peerplays.account module

class peerplays.account .Account (*args, **kwargs)
Bases: peerplays.instance.BlockchainInstance, peerplays.account .Account

This class allows to easily access Account data
Parameters
e account_name (str)— Name of the account

* blockchain_instance (peerplays.peerplays.peerplays) — peerplays in-
stance

full (bool)— Obtain all account data including orders, positions, etc.
* lazy (bool) — Use lazy loading
e full - Obtain all account data including orders, positions, etc.
Returns Account data
Return type dictionary

Raises peerplays.exceptions.AccountDoesNotExistsException —ifaccount does
not exist

Instances of this class are dictionaries that come with additional methods (see below) that allow dealing with an
account and it’s corresponding functions.

from peerplays.account import Account
account = Account ("init0™")
print (account)

Note: This class comes with its own caching function to reduce the load on the API server. Instances of this
class can be refreshed with Account .refresh ().

balance (symbol)
Obtain the balance of a specific Asset. This call returns instances of amount . Amount.

balances
List balances of an account. This call returns instances of amount . Amount.

5.1. peerplays 17

python-peerplays Documentation, Release 0.1

blacklist (account)
Add an other account to the blacklist of this account

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

classmethod cache_object (data, key=None)
This classmethod allows to feed an object into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.

classmethod clear_ cache ()
Clear/Reset the entire Cache

copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

ensure_full ()

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

history (first=0, last=0, limit=-1, only_ops=[], exclude_ops=[])
Returns a generator for individual account transactions. The latest operation will be first. This call can be
used in a for loop.

Parameters
e first (int) - sequence number of the first transaction to return (optional)
* last (int) — sequence number of the last transaction to return (optional)
e limit (int) - limit number of transactions to return (optional)
* only ops (array) - Limit generator by these operations (optional)
* exclude_ops (array) — Exclude these operations from generator (optional).

. note:: only_ops and exclude_ops takes an array of strings: The full list of operation ID’s can be found
in operationids.py. Example: [‘transfer’, ‘fill_order’]
identifier = None

incached (id)
Is an element cached?

classmethod inject (cls)

18 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

is_fully loaded
Is this instance fully loaded / e.g. all data available?

is_1ltm
Is the account a lifetime member (LTM)?

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

keys () — a set-like object providing a view on D’s keys
name

nolist (account)
Remove an other account from any list of this account

static objectid_valid (i)
Test if a string looks like a regular object id of the form::

XXXX.YYYVY.2222

with those being numbers.

peerplays
Alias for the specific blockchain

perform_id tests = True

Pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

refresh ()
Refresh/Obtain an account’s data from the API server

static set_cache_store (klass, *args, **kwargs)

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared blockchain_ instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

space_id =1

store (data, key="id’)
Cache the list

5.1. peerplays 19

python-peerplays Documentation, Release 0.1

Parameters data (1ist)— List of objects to cache

test_valid_objectid (i)
Alias for objectid_valid

testid (id)
In contrast to validity, this method tests if the objectid matches the type_id provided in self.type_id or
self.type_ids

type_id = None
type_ids = []

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

upgrade ()
Upgrade account to life time member

values () — an object providing a view on D’s values

whitelist (account)
Add an other account to the whitelist of this account

class peerplays.account.AccountUpdate (*args, **kwargs)

Bases: peerplays.instance.BlockchainInstance, peerplays.account.AccountUpdate

This purpose of this class is to keep track of account updates as they are pushed through by peerplays.
notify.Notify.

Instances of this class are dictionaries and take the following form:
. code-block: js

{4d’: €2.6.29°, ‘lifetime_fees_paid’: ‘44261516129°, ‘most_recent_op’: ‘2.9.0°, ‘owner’: ‘1.2.29’,
‘pending_fees’: 0, ‘pending_vested_fees’: 16310, ‘total_core_in_orders’: ‘6788845277634,
‘total_ops’: 0}

account
In oder to obtain the actual account . Account from this class, you can use the account attribute.

account_class
alias of Account

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.
copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

20

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

classmethod inject (cls)
items () — a set-like object providing a view on D’s items
keys () — a set-like object providing a view on D’s keys

peerplays
Alias for the specific blockchain

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance ()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

peerplays.amount module

class peerplays.amount .Amount (*args, **kwargs)

Bases: peerplays.instance.BlockchainInstance, peerplays.amount.Amount

This class deals with Amounts of any asset to simplify dealing with the tuple:

(amount, asset)

Parameters
* args (1ist)— Allows to deal with different representations of an amount
* amount (float)— Let’s create an instance with a specific amount

* asset (str)—Let’s you create an instance with a specific asset (symbol)

5.1. peerplays 21

python-peerplays Documentation, Release 0.1

* blockchain_instance (peerplays.peerplays.peerplays) — peerplays in-
stance

Returns All data required to represent an Amount/Asset
Return type dict

Raises ValueError — if the data provided is not recognized

from peerplays.amount import Amount
from peerplays.asset import Asset

a = Amount ("1 USD")

b = Amount (1, "USD")

c = Amount ("20", Asset ("USD"))
at+ b

a x 2

a +t= b

a /= 2.0

Way to obtain a proper instance:
* args can be a string, e.g.: “1 USD”
* args can be a dictionary containing amount and asset_id
* args can be a dictionary containing amount and asset
e argscanbealistofa float and str (symbol)
e argscanbealistofa float anda peerplays.asset.Asset
e amount and asset are defined manually
An instance is a dictionary and comes with the following keys:
e amount (float)
e symbol (str)
e asset (instance of peerplays.asset.Asset)

Instances of this class can be used in regular mathematical expressions (+-x /%) such as:

Amount ("1 USD") * 2
Amount ("15 GOLD") + Amount ("0.5 GOLD™)

amount
Returns the amount as float

asset
Returns the asset as instance of asset .Asset

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.

copy ()
Copy the instance and make sure not to use a reference

22 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

define_ classes ()
Needs to define instance variables that provide classes

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

classmethod inject (cls)

items () — a set-like object providing a view on D’s items
json ()

keys () — aset-like object providing a view on D’s keys

peerplays
Alias for the specific blockchain

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared blockchain_ instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

symbol

Returns the symbol of the asset
tuple ()

update ([E], **[) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

5.1.

peerplays 23

python-peerplays Documentation, Release 0.1

peerplays.asset module

class peerplays.asset .Asset (*args, **kwargs)
Bases: peerplays.instance.BlockchainInstance, peerplays.asset.Asset

Deals with Assets of the network.
Parameters
* Asset (str)— Symbol name or object id of an asset
* lazy (bool)— Lazy loading
e full (bool)— Also obtain bitasset-data and dynamic asset data
* blockchain_instance (instance) - Instance of blockchain
Returns All data of an asset

Return type dict

Note: This class comes with its own caching function to reduce the load on the API server. Instances of this
class can be refreshed with Asset .refresh ().

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

classmethod cache_object (data, key=None)
This classmethod allows to feed an object into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.

classmethod clear cache ()
Clear/Reset the entire Cache

copy () — a shallow copy of D

define_ classes ()
Needs to define instance variables that provide classes

ensure_full ()

flags
List the permissions that are currently used (flags)

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

24 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

incached (id)
Is an element cached?

classmethod inject (cls)

is _bitasset
Is the asset a market pegged asset?

is_fully loaded
Is this instance fully loaded / e.g. all data available?

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

keys () — a set-like object providing a view on D’s keys

static objectid_valid (i)
Test if a string looks like a regular object id of the form::

XXXX.YYYVY.2222

with those being numbers.

peerplays
Alias for the specific blockchain

perform_id tests = True

permissions
List the permissions for this asset that the issuer can obtain

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

precision

refresh ()
Refresh the data from the API server

static set_cache_store (klass, *args, **kwargs)

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_ config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared_instance ()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

5.1. peerplays 25

python-peerplays Documentation, Release 0.1

space_id =1

store (data, key="id’)
Cache the list

Parameters data (1ist)— List of objects to cache
symbol

test_valid_objectid (i)
Alias for objectid_valid

testid (id)
In contrast to validity, this method tests if the objectid matches the type_id provided in self.type_id or
self.type_ids

type_id = None
type_ids = []

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

update_cer (cer, account=None, **kwargs)
Update the Core Exchange Rate (CER) of an asset

values () — an object providing a view on D’s values

peerplays.bet module

class peerplays.bet.Bet (*args, **kwargs)
Bases: peerplays.blockchainobject.BlockchainObject

Read data about a Bet on the chain
Parameters
* identifier (str)— Identifier

* blockchain_instance (peerplays) — PeerPlays() instance to use when accesing a
RPC

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

classmethod cache_object (data, key=None)
This classmethod allows to feed an object into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.

classmethod clear_ cache ()
Clear/Reset the entire Cache

copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

26 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

classmethod inject (cls)

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

keys () — a set-like object providing a view on D’s keys

static objectid_wvalid (i)
Test if a string looks like a regular object id of the form::

XXXX.YYYVY.2222Z

with those being numbers.

peerplays
Alias for the specific blockchain

perform_id tests = True

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

refresh ()
static set_cache_store (klass, *args, **kwargs)

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

5.1. peerplays 27

python-peerplays Documentation, Release 0.1

shared blockchain_ instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

space_id =1

store (data, key="id’)
Cache the list

Parameters data (1ist)— List of objects to cache

test_valid_objectid (i)
Alias for objectid_valid

testid (id)
In contrast to validity, this method tests if the objectid matches the type_id provided in self.type_id or
self.type_ids

type_id = 26
type_ids = []

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

peerplays.bettingmarket module

class peerplays.bettingmarket.BettingMarket (*args, **kwargs)

Bases: peerplays.blockchainobject.BlockchainObject
Read data about a Betting Market on the chain
Parameters
e identifier (str) - Identifier

* blockchain_instance (peerplays) — PeerPlays() instance to use when accesing a
RPC

bettingmarketgroup
blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

classmethod cache_object (data, key=None)
This classmethod allows to feed an object into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.

classmethod clear_cache()
Clear/Reset the entire Cache

copy () — a shallow copy of D

define classes ()
Needs to define instance variables that provide classes

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

classmethod inject (cls)

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

keys () — a set-like object providing a view on D’s keys

static objectid_wvalid (i)
Test if a string looks like a regular object id of the form::

XXXX.YYYVY.2222Z

with those being numbers.

peerplays
Alias for the specific blockchain

perform_id tests = True

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

refresh ()
static set_cache_store (klass, *args, **kwargs)

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

5.1. peerplays 29

python-peerplays Documentation, Release 0.1

shared blockchain_ instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

space_id =1

store (data, key="id’)
Cache the list

Parameters data (1ist)— List of objects to cache

test_valid_objectid (i)
Alias for objectid_valid

testid (id)
In contrast to validity, this method tests if the objectid matches the type_id provided in self.type_id or
self.type_ids

type_id = 25
type_ids = []

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

class peerplays.bettingmarket .BettingMarkets (betting_market_group_id, *args,
**kwargs)
Bases: peerplays.blockchainobject.BlockchainObjects, peerplays.instance.

BlockchainInstance
List of all available BettingMarkets
Parameters betting market_group_id (str) - Market Group ID (1.24 . xxx)

append ()
Append object to the end of the list.

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

cache (key)
(legacy) store the current object with key key.

classmethod cache_objects (data, key=None)
This classmethod allows to feed multiple objects into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear ()
Remove all items from list.

classmethod clear_ cache()
Clear/Reset the entire Cache

copy ()
Return a shallow copy of the list.

count ()
Return number of occurrences of value.

30

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

define_ classes ()
Needs to define instance variables that provide classes

extend ()
Extend list by appending elements from the iterable.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

index ()
Return first index of value.

Raises ValueError if the value is not present.
classmethod inject (cls)

insert ()
Insert object before index.

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

peerplays
Alias for the specific blockchain

pop ()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

refresh (*args, **kwargs)
Interface that needs to be implemented. This method is called when an object is requested that has not yet
been fetched/stored

remove ()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse ()
Reverse IN PLACE.

static set_cache_store (klass, *args, **kwargs)

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared_instance ()
This method allows to set the current instance as default

5.1. peerplays 31

python-peerplays Documentation, Release 0.1

shared blockchain_ instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

sort ()
Stable sort IN PLACE.

store (data, key=None, *args, **kwargs)
Cache the list

Parameters data (1ist)— List of objects to cache

peerplays.bettingmarketgroup module

class peerplays.bettingmarketgroup.BettingMarketGroup (*args, **kwargs)
Bases: peerplays.blockchainobject.BlockchainObject

Read data about a Betting Market Group on the chain
Parameters
* identifier (str) - Identifier

* blockchain_instance (peerplays) — PeerPlays() instance to use when accesing a
RPC

bettingmarkets
blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

classmethod cache_object (data, key=None)
This classmethod allows to feed an object into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.

classmethod clear_ cache ()
Clear/Reset the entire Cache

copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

event

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_dynamic_type ()

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

32 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

identifier = None

incached (id)
Is an element cached?

classmethod inject (cls)
is_dynamic ()
is_dynamic_type (other_type)

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

keys () — a set-like object providing a view on D’s keys

static objectid_vwvalid (i)
Test if a string looks like a regular object id of the form::

XXXX.YYYVY.2222Z

with those being numbers.

peerplays
Alias for the specific blockchain

perform_id tests = True

Pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

refresh ()
resolve (results, **kwargs)
static set_cache_store (klass, *args, **kwargs)

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared blockchain_ instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

space_id =1

store (data, key="id’)
Cache the list

5.1. peerplays 33

python-peerplays Documentation, Release 0.1

Parameters data (1ist)— List of objects to cache

test_valid_objectid (i)
Alias for objectid_valid

testid (id)
In contrast to validity, this method tests if the objectid matches the type_id provided in self.type_id or
self.type_ids

type_id = 24
type_ids = []

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

class peerplays.bettingmarketgroup.BettingMarketGroups (event_id, *args, **kwargs)
Bases: peerplays.blockchainobject.BlockchainObjects, peerplays.instance.
BlockchainInstance

List of all available BettingMarketGroups
Parameters strevent_id - EventID (1.22.xxx)

append ()
Append object to the end of the list.

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

cache (key)
(legacy) store the current object with key key.

classmethod cache_objects (data, key=None)
This classmethod allows to feed multiple objects into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear ()
Remove all items from list.

classmethod clear cache ()
Clear/Reset the entire Cache

copy ()
Return a shallow copy of the list.

count ()
Return number of occurrences of value.

define_classes ()
Needs to define instance variables that provide classes

extend ()
Extend list by appending elements from the iterable.

get_instance_class()
Should return the Chain instance class, e.g. peerplays.PeerPlays

34 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

index ()
Return first index of value.

Raises ValueError if the value is not present.
classmethod inject (cls)

insert ()
Insert object before index.

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

peerplays
Alias for the specific blockchain

pop ()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

refresh (*args, **kwargs)
Interface that needs to be implemented. This method is called when an object is requested that has not yet
been fetched/stored

remove ()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse ()
Reverse IN PLACE.

static set_cache_store (klass, *args, **kwargs)

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

sort ()
Stable sort IN PLACE.

store (data, key=None, *args, **kwargs)
Cache the list

5.1. peerplays 35

python-peerplays Documentation, Release 0.1

Parameters data (1ist)— List of objects to cache

peerplays.block module

class peerplays.block.Block (*args, **kwargs)

Bases: peerplays.instance.BlockchainInstance, peerplays.block.Block
Read a single block from the chain
Parameters
* block (int)— block number
e blockchain_instance (instance)— blockchain instance
* lazy (bool) — Use lazy loading

Instances of this class are dictionaries that come with additional methods (see below) that allow dealing with a
block and it’s corresponding functions.

from .block import Block
block = Block (1)
print (block)

Note: This class comes with its own caching function to reduce the load on the API server. Instances of this
class can be refreshed with Account .refresh ().

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

classmethod cache_object (data, key=None)
This classmethod allows to feed an object into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.

classmethod clear_ cache ()
Clear/Reset the entire Cache

copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

36

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

incached (id)
Is an element cached?

classmethod inject (cls)

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

keys () — a set-like object providing a view on D’s keys

static objectid_wvalid (i)
Test if a string looks like a regular object id of the form::

XXXX.YYYVY.2222

with those being numbers.

peerplays
Alias for the specific blockchain

perform_id tests = True

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

refresh ()
Even though blocks never change, you freshly obtain its contents from an API with this method

static set_cache_store (klass, *args, **kwargs)

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared blockchain_ instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

space_id =1

store (data, key="id’)
Cache the list

Parameters data (1ist)— List of objects to cache

test_valid_objectid (i)
Alias for objectid_valid

5.1.

peerplays 37

python-peerplays Documentation, Release 0.1

testid (id)
In contrast to validity, this method tests if the objectid matches the type_id provided in self.type_id or
self.type_ids

time ()
Return a datatime instance for the timestamp of this block

type_id = 'n/a’
type_ids = []

update ([E] **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

class peerplays.block.BlockHeader (*args, **kwargs)
Bases: peerplays.instance.BlockchainInstance, peerplays.block.BlockHeader

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

classmethod cache_object (data, key=None)
This classmethod allows to feed an object into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.

classmethod clear_cache()
Clear/Reset the entire Cache

copy () — a shallow copy of D

define classes ()
Needs to define instance variables that provide classes

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

classmethod inject (cls)

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

keys () — aset-like object providing a view on D’s keys

38 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

static objectid_valid (i)
Test if a string looks like a regular object id of the form::

XXXX.YYYVY.2222Z

with those being numbers.

peerplays
Alias for the specific blockchain

perform_id_ tests = True

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

refresh ()
Even though blocks never change, you freshly obtain its contents from an API with this method

static set_cache_store (klass, *args, **kwargs)

classmethod set_shared blockchain_ instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared_instance ()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

space_id =1

store (data, key="id’)
Cache the list

Parameters data (1ist)— List of objects to cache

test_valid_objectid (i)
Alias for objectid_valid

testid (id)
In contrast to validity, this method tests if the objectid matches the type_id provided in self.type_id or
self.type_ids

time ()
Return a datatime instance for the timestamp of this block

type_id = 'n/a’
type_ids = []

5.1.

peerplays 39

python-peerplays Documentation, Release 0.1

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

peerplays.blockchain module

class peerplays.blockchain.Blockchain (*args, **kwargs)
Bases: peerplays.instance.BlockchainInstance, peerplays.blockchain.Blockchain

This class allows to access the blockchain and read data from it
Parameters
* blockchain_instance (instance) — instance
¢ mode (str)— (default) Irreversible block (irreversible) or actual head block (head)

* max_block_wait_repetition (int)— (default) 3 maximum wait time for next block
ismax_block_wait_repetition * block_interval

This class let’s you deal with blockchain related data and methods.

awaitTxConfirmation (transaction, limit=10)
Returns the transaction as seen by the blockchain after being included into a block

Note: If you want instant confirmation, you need to instantiate class:.blockchain.Blockchain with
mode="head", otherwise, the call will wait until confirmed in an irreversible block.

Note: This method returns once the blockchain has included a transaction with the same signature. Even
though the signature is not usually used to identify a transaction, it still cannot be forfeited and is derived
from the transaction contented and thus identifies a transaction uniquely.

block_time (block_num)
Returns a datetime of the block with the given block number.

Parameters block_num (int)— Block number

block_timestamp (block_num)
Returns the timestamp of the block with the given block number.

Parameters block_num (int)— Block number
blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

blocks (start=None, stop=None)
Yields blocks starting from start.

Parameters
e start (int) - Starting block

* stop (int) — Stop at this block

40 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

¢ mode (str)— We here have the choice between “head” (the last block) and “irreversible”
(the block that is confirmed by 2/3 of all block producers and is thus irreversible)

chain
Short form for blockchain (for the lazy)

chainParameters ()
The blockchain parameters, such as fees, and committee-controlled parameters are returned here

config()
Returns object 2.0.0

define classes ()
Needs to define instance variables that provide classes

get_all_accounts (start=", stop="", steps=1000.0, **kwargs)
Yields account names between start and stop.

Parameters
e start (str) - Start at this account name
* stop (str)— Stop at this account name
e steps (int)— Obtain steps ret with a single call from RPC

get_block_interval ()
This call returns the block interval

get_chain_properties ()
Return chain properties

get_current_block ()
This call returns the current block

Note: The block number returned depends on the mode used when instanciating from this class.

get_current_block _num/()
This call returns the current block

Note: The block number returned depends on the mode used when instanciating from this class.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

get_network ()
Identify the network

Returns Network parameters
Return type dict

info ()
This call returns the dynamic global properties

classmethod inject (cls)
is_irreversible_mode ()

ops (start=None, stop=None, **kwargs)
Yields all operations (excluding virtual operations) starting from start.

5.1. peerplays 41

python-peerplays Documentation, Release 0.1

Parameters
e start (int)— Starting block
* stop (int) — Stop at this block

¢ mode (str)— We here have the choice between “head” (the last block) and “irreversible”
(the block that is confirmed by 2/3 of all block producers and is thus irreversible)

* only virtual_ops (bool)— Only yield virtual operations
This call returns a list that only carries one operation and its type!
participation_rate

peerplays
Alias for the specific blockchain

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

shared_blockchain_instance ()
This method will initialize SharedInstance. instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

stream (opNames=[], *args, **kwargs)
Yield specific operations (e.g. comments) only

Parameters
* opNames (array) — List of operations to filter for
e start (int)— Start at this block
* stop (int) — Stop at this block

* mode (str)— We here have the choice between * “head”: the last block * “irreversible”:
the block that is confirmed by 2/3 of all

block producers and is thus irreversible!

The dict output is formated such that t ype caries the operation type, timestamp and block_num are taken
from the block the operation was stored in and the other key depend on the actualy operation.

update_chain_parameters ()

wait_for_and_get_block (block_number, blocks_waiting_for=None)
Get the desired block from the chain, if the current head block is smaller (for both head and irreversible)
then we wait, but a maxmimum of blocks_waiting_for * max_block_wait_repetition time before failure.

Parameters
¢ block_number (int) — desired block number

* blocks_waiting_for (int) — (default) difference between block_number and cur-
rent head how many blocks we are willing to wait, positive int

42 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

peerplays.blockchainobject module

class peerplays.blockchainobject.BlockchainObject (*args, **kwargs)

Bases: peerplays.instance.BlockchainInstance, peerplays.blockchainobject.
BlockchainObject

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

classmethod cache_object (data, key=None)
This classmethod allows to feed an object into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.

classmethod clear_ cache ()
Clear/Reset the entire Cache

copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

classmethod inject (cls)

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

keys () — a set-like object providing a view on D’s keys

static objectid_wvalid (i)
Test if a string looks like a regular object id of the form::

XXXX.YYYVY.2222Z

with those being numbers.

peerplays
Alias for the specific blockchain

perform_id tests = True

5.1.

peerplays 43

python-peerplays Documentation, Release 0.1

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

static set_cache_store (klass, *args, **kwargs)

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared_instance ()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared blockchain instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

space_id =1

store (data, key="id’)
Cache the list

Parameters data (1ist)— List of objects to cache

test_valid_objectid (i)
Alias for objectid_valid

testid (id)
In contrast to validity, this method tests if the objectid matches the type_id provided in self.type_id or
self.type_ids

type_id = None
type_ids = []

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

class peerplays.blockchainobject.BlockchainObjects (*args, **kwargs)
Bases: peerplays.instance.BlockchainInstance, peerplays.blockchainobject.
BlockchainObjects

append ()
Append object to the end of the list.

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

44 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

cache (key)
(legacy) store the current object with key key.

classmethod cache_objects (data, key=None)
This classmethod allows to feed multiple objects into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear ()
Remove all items from list.

classmethod clear_ cache()
Clear/Reset the entire Cache

copy ()
Return a shallow copy of the list.

count ()
Return number of occurrences of value.

define_classes ()
Needs to define instance variables that provide classes

extend ()
Extend list by appending elements from the iterable.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

index ()
Return first index of value.

Raises ValueError if the value is not present.
classmethod inject (cls)

insert ()
Insert object before index.

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

peerplays
Alias for the specific blockchain

pop ()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

refresh (*args, **kwargs)
Interface that needs to be implemented. This method is called when an object is requested that has not yet
been fetched/stored

remove ()
Remove first occurrence of value.

. peerplays 45

python-peerplays Documentation, Release 0.1

Raises ValueError if the value is not present.

reverse ()
Reverse IN PLACE.

static set_cache_store (klass, *args, **kwargs)

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared_instance ()
This method allows to set the current instance as default

shared blockchain instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

sort ()
Stable sort IN PLACE.

store (data, key=None, *args, **kwargs)
Cache the list

Parameters data (11ist)— List of objects to cache

peerplays.committee module

class peerplays.committee.Committee (*args, **kwargs)
Bases: peerplays.instance.BlockchainInstance, peerplays.committee.Committee

Read data about a Committee Member in the chain
Parameters

* member (str)— Name of the Committee Member
* blockchain_instance (instance) — instance to use when accesing a RPC
* lazy (bool)— Use lazy loading

account

account_id

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

classmethod cache_object (data, key=None)
This classmethod allows to feed an object into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.

46 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

classmethod clear_cache()
Clear/Reset the entire Cache

copy () — a shallow copy of D

define classes ()
Needs to define instance variables that provide classes

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

classmethod inject (cls)

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

keys () — aset-like object providing a view on D’s keys

static objectid_wvalid (i)
Test if a string looks like a regular object id of the form::

XXXX.YYYVY.2222Z

with those being numbers.

peerplays
Alias for the specific blockchain

perform_id tests = True

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

refresh ()
static set_cache_store (klass, *args, **kwargs)

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

. peerplays 47

python-peerplays Documentation, Release 0.1

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared blockchain instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

space_id =1

store (data, key="id’)
Cache the list

Parameters data (1ist)— List of objects to cache

test_valid_objectid (i)
Alias for objectid_valid

testid (id)
In contrast to validity, this method tests if the objectid matches the type_id provided in self.type_id or
self.type_ids

type_id = None
type_ids = []

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

peerplays.event module

class peerplays.event.Event (*args, **kwargs)
Bases: peerplays.blockchainobject.BlockchainObject

Read data about an event on the chain
Parameters
e identifier (str) - Identifier

* blockchain_instance (peerplays) — PeerPlays() instance to use when accesing a
RPC

bettingmarketgroups
blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

classmethod cache_object (data, key=None)
This classmethod allows to feed an object into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.

classmethod clear cache()
Clear/Reset the entire Cache

48 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

eventgroup

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

classmethod inject (cls)

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

keys () — a set-like object providing a view on D’s keys

static objectid_wvalid (i)
Test if a string looks like a regular object id of the form::

XXXX.YYYVY.2222Z

with those being numbers.

peerplays
Alias for the specific blockchain

perform_id tests = True

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

refresh ()
static set_cache_store (klass, *args, **kwargs)

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

set_status (status, scores=[], **kwargs)

5.1. peerplays 49

python-peerplays Documentation, Release 0.1

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared blockchain instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

space_id =1

store (data, key="id’)
Cache the list

Parameters data (1ist)— List of objects to cache

test_valid_objectid (i)
Alias for objectid_valid

testid (id)
In contrast to validity, this method tests if the objectid matches the type_id provided in self.type_id or
self.type_ids

type_id = 22
type_ids = []

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

class peerplays.event.Events (eventgroup_id, *args, **kwargs)

Bases: peerplays.blockchainobject.BlockchainObjects, peerplays.instance.
BlockchainInstance

List of all available events in an eventgroup

append ()
Append object to the end of the list.

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

cache (key)
(legacy) store the current object with key key.

classmethod cache_objects (data, key=None)
This classmethod allows to feed multiple objects into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear ()
Remove all items from list.

classmethod clear cache ()
Clear/Reset the entire Cache

copy ()
Return a shallow copy of the list.

50

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

count ()
Return number of occurrences of value.

define_classes ()
Needs to define instance variables that provide classes

extend ()
Extend list by appending elements from the iterable.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

index ()
Return first index of value.

Raises ValueError if the value is not present.
classmethod inject (cls)

insert ()
Insert object before index.

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

peerplays
Alias for the specific blockchain

pop ()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

refresh (*args, **kwargs)
Interface that needs to be implemented. This method is called when an object is requested that has not yet
been fetched/stored

remove ()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse ()
Reverse IN PLACE.

static set_cache_store (klass, *args, **kwargs)

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

5.1.

peerplays 51

python-peerplays Documentation, Release 0.1

set_shared instance()
This method allows to set the current instance as default

shared_blockchain_instance ()
This method will initialize SharedInstance. instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

sort ()
Stable sort IN PLACE.

store (data, key=None, *args, **kwargs)
Cache the list

Parameters data (1ist)— List of objects to cache

peerplays.eventgroup module

class peerplays.eventgroup.EventGroup (*args, **kwargs)
Bases: peerplays.blockchainobject.BlockchainObject

Read data about an event group on the chain
Parameters
e identifier (str) - Identifier

* blockchain_instance (peerplays) — PeerPlays() instance to use when accesing a
RPC

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

classmethod cache_object (data, key=None)
This classmethod allows to feed an object into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.

classmethod clear cache()
Clear/Reset the entire Cache

copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

events

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

52 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

identifier = None

incached (id)
Is an element cached?

classmethod inject (cls)

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

keys () — aset-like object providing a view on D’s keys

static objectid_wvalid (i)
Test if a string looks like a regular object id of the form::

XXXX.YYYVY.2222Z

with those being numbers.

peerplays
Alias for the specific blockchain

perform_id tests = True

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

refresh ()
static set_cache_store (klass, *args, **kwargs)

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

space_id =1
sport

store (data, key="id’)
Cache the list

Parameters data (1ist)— List of objects to cache

test_valid_objectid (i)
Alias for objectid_valid

5.1.

peerplays 53

python-peerplays Documentation, Release 0.1

testid (id)
In contrast to validity, this method tests if the objectid matches the type_id provided in self.type_id or
self.type_ids

type_id = 21
type_ids = []

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

class peerplays.eventgroup.EventGroups (sport_id, *args, **kwargs)
Bases: peerplays.blockchainobject.BlockchainObjects, peerplays.instance.
BlockchainInstance

List of all available EventGroups
Parameters sport_id (str)— SportID (1.20.xxx)

append ()
Append object to the end of the list.

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

cache (key)
(legacy) store the current object with key key.

classmethod cache_objects (data, key=None)
This classmethod allows to feed multiple objects into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear ()
Remove all items from list.

classmethod clear_ cache ()
Clear/Reset the entire Cache

copy ()
Return a shallow copy of the list.

count ()
Return number of occurrences of value.

define classes ()
Needs to define instance variables that provide classes

extend ()
Extend list by appending elements from the iterable.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

54 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

incached (id)
Is an element cached?

index ()
Return first index of value.

Raises ValueError if the value is not present.
classmethod inject (cls)

insert ()
Insert object before index.

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

peerplays
Alias for the specific blockchain

pop ()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

refresh (*args, **kwargs)
Interface that needs to be implemented. This method is called when an object is requested that has not yet
been fetched/stored

remove ()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse ()
Reverse IN PLACE.

static set_cache_store (klass, *args, **kwargs)

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared_ instance ()
This method allows to set the current instance as default

shared_blockchain_ instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

sort ()
Stable sort IN PLACE.

store (data, key=None, *args, **kwargs)
Cache the list

Parameters data (1ist)— List of objects to cache

5.1. peerplays 55

python-peerplays Documentation, Release 0.1

peerplays.exceptions module

exception peerplays.exceptions.AccountExistsException
Bases: Exception

The requested account already exists
args

with traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

exception peerplays.exceptions.BetDoesNotExistException
Bases: Exception

This bet does not exist
args

with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

exception peerplays.exceptions.BettingMarketDoesNotExistException
Bases: Exception

Betting market does not exist
args

with traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

exception peerplays.exceptions.BettingMarketGroupDoesNotExistException
Bases: Exception

Betting Market Group does not exist
args

with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

exception peerplays.exceptions.EventDoesNotExistException
Bases: Exception

This event does not exist
args

with traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

exception peerplays.exceptions.EventGroupDoesNotExistException
Bases: Exception

This event group does not exist
args

with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

exception peerplays.exceptions.GenesisBalanceDoesNotExistsException
Bases: Exception

The provided genesis balance id does not exist

56 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

args

with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

exception peerplays.exceptions.InsufficientAuthorityError
Bases: Exception

The transaction requires signature of a higher authority
args

with traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

exception peerplays.exceptions.ObjectNotInProposalBuffer
Bases: Exception

Object was not found in proposal
args

with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

exception peerplays.exceptions.RPCConnectionRequired
Bases: Exception

An RPC connection is required
args

with traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

exception peerplays.exceptions.RuleDoesNotExistException
Bases: Exception

Rule does not exist
args

with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

exception peerplays.exceptions.SportDoesNotExistException
Bases: Exception

Sport does not exist
args

with traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

exception peerplays.exceptions.WrongMasterPasswordException
Bases: Exception

The password provided could not properly unlock the wallet
args

with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

5.1. peerplays 57

python-peerplays Documentation, Release 0.1

peerplays.genesisbalance module

class peerplays.genesisbalance.GenesisBalance (*args, **kwargs)
Bases: peerplays.instance.BlockchainInstance, peerplays.genesisbalance.
GenesisBalance

Read data about a Committee Member in the chain
Parameters
¢ member (str)— Name of the Committee Member

* blockchain_instance (peerplays) — PeerPlays() instance to use when accesing a
RPC

* lazy (bool) — Use lazy loading
blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

classmethod cache_object (data, key=None)
This classmethod allows to feed an object into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

claim (account=None, **kwargs)
Claim a balance from the genesis block

Parameters
* balance_id (str) - The identifier that identifies the balance to claim (1.15.x)

* account (str) - (optional) the account that owns the bet (defaults to
default_account)

clear () — None. Remove all items from D.

classmethod clear_ cache ()
Clear/Reset the entire Cache

copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

classmethod inject (cls)

58 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

keys () — a set-like object providing a view on D’s keys

static objectid_wvalid (i)
Test if a string looks like a regular object id of the form::

XXXX.YYYVY.2222Z

with those being numbers.

peerplays
Alias for the specific blockchain

perform_id tests = True

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

refresh ()
static set_cache_store (klass, *args, **kwargs)

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

space_id =1

store (data, key="id’)
Cache the list

Parameters data (1ist)— List of objects to cache

test_valid_objectid (i)
Alias for objectid_valid

testid (id)
In contrast to validity, this method tests if the objectid matches the type_id provided in self.type_id or
self.type_ids

type_id = 15
type_ids = []

5.1.

peerplays 59

python-peerplays Documentation, Release 0.1

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

class peerplays.genesisbalance.GenesisBalances (*args, **kwargs)
Bases: peerplays.instance.BlockchainInstance, peerplays.genesisbalance.
GenesisBalances

List genesis balances that can be claimed from the keys in the wallet

append ()
Append object to the end of the list.

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

chain
Short form for blockchain (for the lazy)

clear ()
Remove all items from list.

copy ()
Return a shallow copy of the list.

count ()
Return number of occurrences of value.

define_ classes ()
Needs to define instance variables that provide classes

extend ()
Extend list by appending elements from the iterable.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

index ()
Return first index of value.

Raises ValueError if the value is not present.
classmethod inject (cls)

insert ()
Insert object before index.

peerplays
Alias for the specific blockchain

pop ()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove ()
Remove first occurrence of value.

Raises ValueError if the value is not present.

60 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

reverse ()
Reverse IN PLACE.

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

sort ()
Stable sort IN PLACE.

peerplays.instance module

class peerplays.instance.BlockchainInstance (*args, **kwargs)

Bases: graphenecommon.instance.AbstractBlockchainInstanceProvider
This is a class that allows compatibility with previous naming conventions
blockchain

chain
Short form for blockchain (for the lazy)

define_classes ()
Needs to define instance variables that provide classes

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

classmethod inject (cls)

peerplays
Alias for the specific blockchain

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

5.1.

peerplays 61

python-peerplays Documentation, Release 0.1

class peerplays.instance.SharedInstance

Bases: object
This class merely offers a singelton for the Blockchain Instance
config = {}

instance = None

peerplays.instance.set_shared _blockchain_instance (instance)

peerplays.instance.set_shared_config (config)

peerplays.instance.set_shared peerplays_instance (instance)

peerplays.instance.shared _blockchain_instance ()

peerplays.instance.shared peerplays_instance ()

peerplays.market module

class peerplays.market .Market (*args, **kwargs)

Bases: peerplays.instance.BlockchainInstance, peerplays.market.Market
This class allows to easily access Markets on the blockchain for trading, etc.
Parameters

* blockchain_instance (peerplays.peerplays.PeerPlays) — Peerplays in-
stance

* base (peerplays.asset.Asset)— Base asset

* quote (peerplays.asset.Asset)— Quote asset
Returns Blockchain Market
Return type dictionary with overloaded methods

Instances of this class are dictionaries that come with additional methods (see below) that allow dealing with a
market and it’s corresponding functions.

This class tries to identify two assets as provided in the parameters in one of the following forms:
* base and quote are valid assets (according to peerplays.asset.Asset)
* base:quote separated with :
* base/quote separated with /

* base—quote separated with —

Note: Throughout this library, the quote symbol will be presented first (e.g. BTC: PPY with BTC being the
quote), while the base only refers to a secondary asset for a trade. This means, if you call peerplays.
market.Market.sell () or peerplays.market.Market.buy (), you will sell/buy only quote and
obtain/pay only base.

accountopenorders (account=None)
Returns open Orders.

Parameters account (bitshares.account.Account)— Account name or instance of
Account to show orders for in this market

62

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

accounttrades (account=None, limit=25)
Returns your trade history for a given market, specified by the “currencyPair” parameter. You may also
specify “all” to get the orderbooks of all markets.

Parameters
* currencyPair (str)— Return results for a particular market only (default: “all”)
e 1limit (int) - Limit the amount of orders (default: 25)
Output Parameters:
* type: sell or buy
* rate: price for quote denoted in base per quote
e amount: amount of quote

* total: amount of base at asked price (amount/price)

Note: This call goes through the trade history and searches for your account, if there are no orders within
limit trades, this call will return an empty array.

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

buy (price, amount, expiration=None, killfill=False, account=None, returnOrderld=False, **kwargs)
Places a buy order in a given market.

Parameters
* price (float) - price denoted in base/quote
e amount (number)— Amount of quote to buy

* expiration (number) — (optional) expiration time of the order in seconds (defaults to
7 days)

* killfill (bool) — flag that indicates if the order shall be killed if it is not filled (de-
faults to False)

* account (string)— Account name that executes that order

e returnOrderld (string)-If setto “head” or “irreversible” the call will wait for the
tx to appear in the head/irreversible block and add the key “orderid” to the tx output

Prices/Rates are denoted in ‘base’, i.e. the BTC_PPY market is priced in PPY per BTC.
Example: in the BTC_PPY market, a price of 400 means a BTC is worth 400 PPY

Note: All prices returned are in the reversed orientation as the market. I.e. in the BTC/PPY market,
prices are PPY per BTC. That way you can multiply prices with /.05 to get a +5%.

Warning: Since buy orders are placed as limit-sell orders for the base asset, you may end up obtaining
more of the buy asset than you placed the order for. Example:

* You place and order to buy 10 BTC for 100 PPY/BTC
* This means that you actually place a sell order for 1000 PPY in order to obtain at least 10 PPY

5.1.

peerplays 63

python-peerplays Documentation, Release 0.1

BTC

* If an order on the market exists that sells BTC for cheaper, you will end up with more than 10

cancel (orderNumber, account=None, **kwargs)

Cancels an order you have placed in a given market. Requires only the “orderNumber”. An order number

takes the form 1.7 .xxx.

Parameters orderNumber (st r)— The Order Object ide of the form 1 .

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.
copy () — a shallow copy of D

core_base market ()
This returns an instance of the market that has the core market of the base asset.

7. XXXX

It means that base needs to be a market pegged asset and returns a market to it’s collateral asset.

core_quote_market ()

This returns an instance of the market that has the core market of the quote asset.

It means that quote needs to be a market pegged asset and returns a market to it’s collateral asset.

define_classes ()
Needs to define instance variables that provide classes

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

get_limit_orders (limit=25)
Returns the list of limit orders for a given market.

Parameters limit (int)— Limit the amount of orders (default: 25)

Sample output:

[0.003679 BTC/PPY (1.9103 BTC|[519.29602 PPY),
0.003676 BTIC/PPY (299.9997 BTC|81606.16394 PPY),
0.003665 BTC/PPY (288.4618 BTC|78706.21881 PPY),
0.003665 BTC/PPY (3.5285 BTC|962.74409 PPY),
0.003665 BTIC/PPY (72.5474 BTC|19794.41299 PPY),
[0.003738 BTC/PPY (36.4715 BTC|9756.17339 PPY),
0.003738 BTC/PPY (18.6915 BTC|5000.00000 PPY),
0.003742 BTC/PPY (182.6881 BTC|48820.22081 PPY),
0.003772 BTC/PPY (4.5200 BTC|[1198.14798 PPY),
0.003799 BTC/PPY (148.4975 BTC|39086.59741 PPY)]

Note: Each bid is an instance of class:bitshares.price.Order and thus carries the keys base, quote and

price. From those you can obtain the actual amounts for sale

64

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

get_string (separator=":")
Return a formated string that identifies the market, e.g. BTC: PPY

Parameters separator (str)— The separator of the assets (defaults to :)
classmethod inject (cls)
items () — aset-like object providing a view on D’s items
keys () — a set-like object providing a view on D’s keys

orderbook (limit=25)
Returns the order book for a given market. You may also specify “all” to get the orderbooks of all markets.

Parameters limit (int)— Limit the amount of orders (default: 25)

Sample output:

'"bids': [0.003679 BTC/PPY (1.9103 BTC|519.29602 PPY),
.003676 BTC/PPY (299.9997 BTC|81606.16394 PPY),
.003665 BTC/PPY (288.4618 BTC|78706.21881 PPY),
.003665 BTC/PPY (3.5285 BTC|962.74409 PPY),

.003665 BTC/PPY (72.5474 BTC|19794.41299 PPY)],

asks': [0.003738 BTC/PPY (36.4715 BTC|9756.17339 PPY),
.003738 BTC/PPY (18.6915 BTC|5000.00000 PPY),

.003742 BTC/PPY (182.6881 BTC|48820.22081 PPY),
.003772 BTC/PPY (4.5200 BTC|1198.14798 PPY),

.003799 BTC/PPY (148.4975 BTC|39086.59741 PPY)]}

- O O O O~

O O O O

Note: Each bid is an instance of class:peerplays.price.Order and thus carries the keys base, quote and
price. From those you can obtain the actual amounts for sale

Note: This method does order consolidation and hides some details of individual orders!

peerplays
Alias for the specific blockchain

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

sell (price, amount, expiration=None, killfill=False, account=None, returnOrderld=False, **kwargs)
Places a sell order in a given market.

Parameters
* price (float) - price denoted in base/quote
¢ amount (number)— Amount of quote to sell

* expiration (number) — (optional) expiration time of the order in seconds (defaults to
7 days)

* killfill (bool) — flag that indicates if the order shall be killed if it is not filled (de-
faults to False)

* account (string)— Account name that executes that order

5.1. peerplays 65

python-peerplays Documentation, Release 0.1

e returnOrderld (string)—If set to “head” or “irreversible” the call will wait for the
tx to appear in the head/irreversible block and add the key “orderid” to the tx output

Prices/Rates are denoted in ‘base’, i.e. the BTC_PPY market is priced in PPY per BTC.
Example: in the BTC_PPY market, a price of 300 means a BTC is worth 300 PPY

Note: All prices returned are in the reversed orientation as the market. I.e. in the BTC/PPY market,
prices are PPY per BTC. That way you can multiply prices with /.05 to get a +5%.

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared_instance ()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared_blockchain_instance ()
This method will initialize SharedInstance. instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

ticker ()
Returns the ticker for all markets.

Output Parameters:
e last: Price of the order last filled
* lowestAsk: Price of the lowest ask
* highestBid: Price of the highest bid
* baseVolume: Volume of the base asset
* quoteVolume: Volume of the quote asset
* percentChange: 24h change percentage (in %)
* settlement_price: Settlement Price for borrow/settlement
* core_exchange_rate: Core exchange rate for payment of fee in non-PPY asset
e price24h: the price 24h ago

Sample Output:

{

"quoteVolume": 48328.73333,
"quoteSettlement_price": 332.3344827586207,
"lowestAsk": 340.0,

"baseVolume": 144.1862,

"percentChange": -1.9607843231354893,

(continues on next page)

66

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

(continued from previous page)

"highestBid": 334.20000000000005,
"latest": 333.33333330133934,

trades (limit=25, start=None, stop=None)
Returns your trade history for a given market.

Parameters
e 1limit (int) - Limit the amount of orders (default: 25)
e start (datet ime) — start time
* stop (datetime) — stop time

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

volume24h ()
Returns the 24-hour volume for all markets, plus totals for primary currencies.

Sample output:

{
"PPY": 41.12345,
"BTC": 1.0

peerplays.memo module

class peerplays.memo.Memo (*args, **kwargs)
Bases: peerplays.instance.BlockchainInstance, peerplays.memo.Memo

Deals with Memos that are attached to a transfer
Parameters
e from_account (peerplays.account .Account)— Account that has sent the memo

* to_account (peerplays.account.Account) — Account that has received the
memo

* blockchain_instance (peerplays.peerplays.PeerPlays) — instance

A memo is encrypted with a shared secret derived from a private key of the sender and a public key of the
receiver. Due to the underlying mathematics, the same shared secret can be derived by the private key of the
receiver and the public key of the sender. The encrypted message is perturbed by a nonce that is part of the
transmitted message.

from peerplays.memo import Memo
m = Memo ("from", "to")
m.unlock_wallet ("secret")

enc = (m.encrypt ("foobar"))
print (enc)
>> {'nonce': '17329630356955254641', 'message': '8563e2bb2976e0217806d642901a2855

LIRS

7

(continues on next page)

5.1. peerplays 67

python-peerplays Documentation, Release 0.1

(continued from previous page)

print (m.decrypt (enc))
>> foobar

To decrypt a memo, simply use

from peerplays.memo import Memo

m = Memo ()
m.blockchain.wallet.unlock ("secret™)
print (memo.decrypt (op_data["memo"]))

if op_data being the payload of a transfer operation.
blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

chain
Short form for blockchain (for the lazy)

decrypt (message)
Decrypt a message

Parameters message (dict) — encrypted memo message
Returns decrypted message
Return type str

define_classes ()
Needs to define instance variables that provide classes

encrypt (message)
Encrypt a memo

Parameters message (str) — clear text memo message
Returns encrypted message
Return type str

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

classmethod inject (cls)

peerplays
Alias for the specific blockchain

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

68

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

shared blockchain_ instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

unlock_wallet (*args, **kwargs)
Unlock the library internal wallet

peerplays.message module

class peerplays.message .Message (*args, **kwargs)
Bases: peerplays.instance.BlockchainInstance, peerplays.message.Message

MESSAGE_SPLIT = ('—-———-— BEGIN PEERPLAYS SIGNED MESSAGE v, ! BEGIN META--——-— t,o"
SIGNED_MESSAGE_ENCAPSULATED = '\n{MESSAGE_SPLIT[0]}\n{message}\n{MESSAGE_SPLIT[1] }\nac
SIGNED_MESSAGE_META = '{message}\naccount={meta[account] }\nmemokey={meta[memokey] }\nbl
blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

chain
Short form for blockchain (for the lazy)

define_classes ()
Needs to define instance variables that provide classes

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

classmethod inject (cls)

peerplays
Alias for the specific blockchain

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared_instance ()
This method allows to set the current instance as default

shared blockchain instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

sign (*args, **kwargs)
Sign a message with an account’s memo key

Parameters account (str) — (optional) the account that owns the bet (defaults to
default_account)

Raises ValueError — If not account for signing is provided

Returns the signed message encapsulated in a known format

5.1. peerplays 69

python-peerplays Documentation, Release 0.1

supported_formats = (<class 'graphenecommon.message.MessageVl'>, <class 'graphenecommo:
valid exceptions = (<class 'graphenecommon.exceptions.AccountDoesNotExistsException'>,

verify (**kwargs)
Verify a message with an account’s memo key

Parameters account (str) — (optional) the account that owns the bet (defaults to
default_account)

Returns True if the message is verified successfully

:raises InvalidMessageSignature if the signature is not ok

peerplays.notify module

class peerplays.notify.Notify (accounts=[], objects=[], on_tx=None, on_object=None,

on_block=None, on_account=None, peerplays_instance=None)
Bases: events.events.Events

Notifications on Blockchain events.
Parameters
* accounts (11ist)— Account names/ids to be notified about when changing
* objects (11ist) - Object ids to be notified about when changed
* on_tx (fnt) — Callback that will be called for each transaction received
e on_block (fnt) — Callback that will be called for each block received
* on_account (fnt) — Callback that will be called for changes of the listed accounts

* peerplays_instance (peerplays.peerplays.PeerPlays) — PeerPlays in-
stance

Example

from pprint import pprint
from peerplays.notify import Notify

notify = Notify(
accounts=["xeroc"],
on_account=print,
on_block=print,
on_tx=print

)

notify.listen()

listen()
This call initiates the listening/notification process. It behaves similar to run_forever ().

process_account (message)
This is wused for processing of account Updates. It will return instances of
:class:peerplays.account. AccountUpdate

70 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

peerplays.peerplays module

class peerplays.peerplays.PeerPlays (node=", rpcuser=", rpcpassword=", debug=False,

skip_wallet_init=False, **kwargs)
Bases: graphenecommon.chain.AbstractGrapheneChain

Connect to the PeerPlays network.
Parameters
* node (str)— Node to connect to (optional)
* rpcuser (str)— RPC user (optional)
* rpcpassword (str) — RPC password (optional)
* nobroadcast (bool) - Do not broadcast a transaction! (optional)
* debug (bool) — Enable Debugging (optional)

* keys (array,dict, string) — Predefine the wif keys to shortcut the wallet database
(optional)

* offline (bool)— Boolean to prevent connecting to network (defaults to False) (op-
tional)

* proposer (str)— Propose a transaction using this proposer (optional)

* proposal_expiration (int) — Expiration time (in seconds) for the proposal (op-
tional)

* proposal_review (int)— Review period (in seconds) for the proposal (optional)
* expiration (int)-Delay in seconds until transactions are supposed to expire (optional)

* blocking (str)— Wait for broadcasted transactions to be included in a block and return
full transaction (can be “head” or “irrversible”)

* bundle (bool) - Do not broadcast transactions right away, but allow to bundle operations
(optional)
Three wallet operation modes are possible:

* Wallet Database: Here, the peerplayslibs load the keys from the locally stored wallet SQLite database
(see storage.py). To use this mode, simply call PeerPlays () without the keys parameter

* Providing Keys: Here, you can provide the keys for your accounts manually. All you need to do is add the
wif keys for the accounts you want to use as a simple array using the keys parameter to PeerPlays ().

* Force keys: This more is for advanced users and requires that you know what you are doing. Here, the
keys parameter is a dictionary that overwrite the act ive, owner, or memo keys for any account. This
mode is only used for foreign signatures!

If no node is provided, it will connect to the node of http://ppy-node.peerplays.ceu. It is highly recommended
that you pick your own node instead. Default settings can be changed with:

peerplays set node <host>

where <host> starts withws:// orwss://.
The purpose of this class it to simplify interaction with PeerPlays.

The idea is to have a class that allows to do this:

5.1. peerplays 7

http://ppy-node.peerplays.eu

python-peerplays Documentation, Release 0.1

from peerplays import PeerPlays
peerplays = PeerPlays ()
print (peerplays.info())

All that is requires is for the user to have added a key with peerplays

’peerplays addkey

and setting a default author:

’peerplays set default_account xeroc

This class also deals with edits, votes and reading content.

allow (foreign, weight=None, permission="active’, account=None, threshold=None, **kwargs)
Give additional access to an account by some other public key or account.

Parameters
» foreign (str)— The foreign account that will obtain access

* weight (int) — (optional) The weight to use. If not define, the threshold will be used.
If the weight is smaller than the threshold, additional signatures will be required. (defaults
to threshold)

* permission (str) - (optional) The actual permission to modify (defaults to active)

* account (str) - (optional) the account to allow access to (defaults to
default_account)

* threshold (int) — The threshold that needs to be reached by signatures to be able to
interact

approvecommittee (committees, account=None, **kwargs)
Approve a committee

Parameters
e committees (I11ist)— list of committee member name or id

* account (str) - (optional) the account to allow access to (defaults to
default_account)

approveproposal (proposal_ids, account=None, approver=None, **kwargs)
Approve Proposal

Parameters
» proposal_id (1ist)—Ids of the proposals

* account (str) — (optional) the account to allow access to (defaults to
default_account)

approvewitness (witnesses, account=None, **kwargs)
Approve a witness

Parameters
* witnesses (11ist) - list of Witness name or id

* account (str) - (optional) the account to allow access to (defaults to
default_account)

72 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

bet_cancel (bet_to_cancel, account=None, **kwargs)
Cancel a bet

Parameters
¢ bet_to_cancel (str) - The identifier that identifies the bet to cancel

* account (str) - (optional) the account that owns the bet (defaults to
default_account)

bet_place (betting_market_id, amount_to_bet, backer_multiplier, back_or_lay, account=None,
**kwargs)
Place a bet

Parameters
* betting market_id (str) - The identifier for the market to bet in
e amount_to_bet (peerplays.amount .Amount)— Amount to bet with
* backer_multiplier (int)— Multipler for backer
* back_or_lay (str)- “back” or “lay” the bet
* account (str)— (optional) the account to bet (defaults to default_account)

betting market_create (payout_condition, description, group_id="0.0.0’, account=None,
**kwargs)
Create an event group. This needs to be proposed.

Parameters

e payout_condition (1ist) — Internationalized names, e.g. [['de', 'Foo'],
['en', 'bar']]

* description (Ilist) — Internationalized descriptions, e.g. [['de', 'Foo'l],
['en', 'bar']]

* group_id (str)— Group ID to create the market for (defaults to relative id 0. 0. 0)

* account (str) - (optional) the account to allow access to (defaults to
default_account)

betting_market_group_create (description, event_id="0.0.0’, rules_id="0.0.0’, asset=None,

delay_before_settling=0, never_in_play=False, resolu-
tion_constraint="exactly_one_winner’, account=None,
**kwargs)

Create an betting market. This needs to be proposed.
Parameters
* description (1ist) - Internationalized list of descriptions
e event_id (str)— Event ID to create this for (defaults to relative id 0.0 . 0)
e rule_id (str)—Rule ID to create this with (defaults to relative id 0.0 . 0)
e asset (peerplays.asset.Asset)— Asset to be used for this market

* delay_before_settling (int) — Delay in seconds before settling (defaults to 0
seconds - immediatelly)

* never_in play (bool) — Set this market group as never in play (defaults to False)

* account (str) — (optional) the account to allow access to (defaults to
default_account)

5.1.

peerplays 73

python-peerplays Documentation, Release 0.1

betting_market_group_update (betting_market_group_id, description=None, event_id=None,

rules_id=None, status=None, account=None, **kwargs)
Update an betting market. This needs to be proposed.

Parameters
* betting market_group_id (str)—1d of the betting market group to update
* description (1ist) - Internationalized list of descriptions
¢ event_id (str)— Event ID to create this for
e rule_id (str)—Rule ID to create this with
* status (str) - New Status

* account (str) — (optional) the account to allow access to (defaults to
default_account)

betting_market_resolve (betting_market_group_id, results, account=None, **kwargs)
Create an betting market. This needs to be proposed.

Parameters
* betting market_group_id (str)— Market Group ID to resolve
* results (1ist)— Array of Result of the market (win, not_win, or cancel)

* account (str) — (optional) the account to allow access to (defaults to
default_account)

Results take the form::

[
["1.21.257", "win"],
["1.21.258", "not_win"],
["1.21.259", "cancel"],

betting market_rules_create (names, descriptions, account=None, **kwargs)
Create betting market rules

Parameters
* names (list) — Internationalized names, e.g. [['de', 'Foo'], ['en',
'bar']]
* descriptions (list) — Internationalized descriptions, e.g. [['de', 'Foo'l],

['en', 'bar']]

* account (str) - (optional) the account to allow access to (defaults to
default_account)

betting_market_rules_update (rules_id, names, descriptions, account=None, **kwargs)
Update betting market rules

Parameters

* rules_id (str)—Id of the betting market rules to update

* names (list) — Internationalized names, e.g. [['de', 'Foo']l, ['en',
'bar']]
e descriptions (1ist) — Internationalized descriptions, e.g. [['de', 'Foo'],

['en', 'bar']]

74 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

* account (str) — (optional) the account to allow access to (defaults to
default_account)

betting_market_update (betting_market_id, payout_condition, description, group_id="0.0.0", ac-
count=None, **kwargs)
Update an event group. This needs to be proposed.

Parameters
* betting_market_id (str)—Id of the betting market to update

e payout_condition (list) — Internationalized names, e.g. [['de', 'Foo'],
['en', 'bar']]

* description (I1ist) — Internationalized descriptions, e.g. [['de', 'Foo'l,
['en', 'bar']]

e group_id (str)— Group ID to create the market for (defaults to relative id 0. 0. 0)

* account (str) - (optional) the account to allow access to (defaults to
default_account)

broadcast (tx=None)
Broadcast a transaction to the Blockchain

Parameters tx (tx)— Signed transaction to broadcast

cancel (orderNumbers, account=None, **kwargs)
Cancels an order you have placed in a given market. Requires only the “orderNumbers”. An order number
takes the form 1.7 . xxx.

Parameters orderNumbers (str)— The Order Object ide of the form 1.7 . xxxx
cancel_offer (issuer_account_id_or_name, offer_id, **kwargs)
clear ()

clear_ cache ()
Clear Caches

connect (node=", rpcuser="", rpcpassword=", **kwargs)
Connect to blockchain network (internal use only)

create_account (account_name, registrar=None, referrer="1.2.0", referrer_percent=50,
owner_key=None, active_key=None, memo_key=None, pass-
word=None, additional_owner_keys=[], additional_active_keys=[],
additional_owner_accounts=[], additional_active_accounts=[],

proxy_account="proxy-to-self’, storekeys=True, **kwargs)
Create new account on PeerPlays

The brainkey/password can be used to recover all generated keys (see peerplaysbase.account for more
details.

By default, this call will use default_account to register a new name account_name with all keys
being derived from a new brain key that will be returned. The corresponding keys will automatically be
installed in the wallet.

Warning: Don’t call this method unless you know what you are doing! Be sure to understand what
this method does and where to find the private keys for your account.

. peerplays 75

python-peerplays Documentation, Release 0.1

Note: Please note that this imports private keys (if password is present) into the wallet by default. How-
ever, it does not import the owner key for security reasons. Do NOT expect to be able to recover it from

the wallet if you lose your password!

Parameters
* account_name (str) - (required) new account name

* registrar (str) — which account should pay the registration fee (defaults to
default_account)

* owner_key (str)— Main owner key
* active_key (str)— Main active key
* memo_key (str)— Main memo_key

* password (str) — Alternatively to providing keys, one can provide a password from
which the keys will be derived

* additional_ owner_keys (array) — Additional owner public keys

* additional_active_keys (array) — Additional active public keys

¢ additional_owner_accounts (array) — Additional owner account names

¢ additional_active_accounts (array) - Additional acctive account names
* storekeys (bool)— Store new keys in the wallet (default: True)

Raises AccountExistsException — if the account already exists on the blockchain

create_bid (bidder_account_id_or_name, bid_price, offer_id, **kwargs)
create_offer (item_ids, issuer_id_or_name, minimum_price, maximum_price, buying_item, of-
fer_expiration_date, memo=None, **kwargs)

custom_account_authority create (permission_id, operation_type, valid_from, valid_to,
owner_account=None, **kwargs)

custom_account_authority_delete (auth_id, owner_account=None, **kwargs)

custom_account_authority update (auth_id, new_valid_from, new_valid_to,
owner_account=None, **kwargs)

custom_permission_create (permission_name, owner_account=None, weight_threshold=[], ac-
count_auths=[], key_auths=[], address_auths=[], **kwargs)

custom_permission_delete (permission_id, owner_account=None, **kwargs)

custom_permission_update (permission_id, owner_account=None, weight_threshold=[], ac-
count_auths=[], key_auths=[], address_auths=[], **kwargs)

define_ classes ()
deleteproposal (proposal_id, account=None, **kwargs)

disallow (foreign, permission="active’, account=None, threshold=None, **kwargs)
Remove additional access to an account by some other public key or account.

Parameters
* foreign (str)— The foreign account that will obtain access

* permission (str)— (optional) The actual permission to modify (defaults to active)

76

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

* account (str) — (optional) the account to allow access to (defaults to
default_account)

* threshold (int) — The threshold that needs to be reached by signatures to be able to
interact

disapprovecommittee (committees, account=None, **kwargs)
Disapprove a committee

Parameters
e committees (1ist) - list of committee name or id

* account (str) — (optional) the account to allow access to (defaults to
default_account)

disapproveproposal (proposal_ids, account=None, approver=None, **kwargs)
Disapprove Proposal

Parameters
e proposal_ids (1ist) - Ids of the proposals

* account (str) - (optional) the account to allow access to (defaults to
default_account)

disapprovewitness (witnesses, account=None, **kwargs)
Disapprove a witness

Parameters
* witnesses (11ist) - list of Witness name or id

* account (str) — (optional) the account to allow access to (defaults to
default_account)

event_create (name, season, start_time, event_group_id="0.0.0’, account=None, **kwargs)
Create an event. This needs to be proposed.

Parameters
* name (list) — Internationalized names, e.g. [['de', 'Foo'l, ['en',
'bar']]
* season (list) — Internationalized season, e.g. [['de', '"Foo'l, ['en',
'bar']]
* event_group_id (str)— Event group ID to create the event for (defaults to relative
id0.0.0)

* start_time (datet ime)— Time of the start of the event

* account (str) — (optional) the account to allow access to (defaults to
default_account)

event_group_create (names, sport_id="0.0.0’, account=None, **kwargs)
Create an event group. This needs to be proposed.
Parameters

* names (list) — Internationalized names, e.g. [['de', 'Foo'l, ['en',
'bar']]
* sport_id (str)-Sport ID to create the event group for (defaults to relative id 0. 0. 0)

5.1. peerplays 77

python-peerplays Documentation, Release 0.1

* account (str) — (optional) the account to allow access to (defaults to
default_account)

event_group_update (event_group_id, names=[], sport_id="0.0.0’, account=None, **kwargs)
Update an event group. This needs to be proposed.

Parameters
* event_id (str) - Id of the event group to update

* names (list) — Internationalized names, e.g. [['de', 'Foo'l, ['en',
'bar']]

* sport_id (str)—Sport ID to create the event group for (defaults to relative id 0.0 . 0)

* account (str) - (optional) the account to allow access to (defaults to
default_account)

event_update (event_id, name=None, season=None, start_time=None, event_group_id=None, sta-

tus=None, account=None, **kwargs)
Update an event. This needs to be proposed.

Parameters

* event_id (str) - Id of the event to update

* name (list) — Internationalized names, e.g. [['de', 'Foo'l, ['en',
'bar']]

* season (list) — Internationalized season, e.g. [['de', 'Foo']l, ['en',
'bar']]

* event_group_id (str)— Event group ID to create the event for (defaults to relative
id 0.0.0)

e start_time (datetime)— Time of the start of the event
e status (str)— Event status

* account (str) - (optional) the account to allow access to (defaults to
default_account)

event_update_status (event_id, status, scores=[], account=None, **kwargs)
Update the status of an event. This needs to be proposed.

Parameters
* event_id (str)—1d of the event to update
* status (str)— Event status
* scores (11ist)— List of strings that represent the scores of a match (defaults to [])

* account (str) - (optional) the account to allow access to (defaults to
default_account)

eventgroup_delete (event_group_id="0.0.0’, account=None, **kwargs)
Delete an eventgroup. This needs to be propose.

Parameters
* event_group_id (str) - ID of the event group to be deleted

* account (str)— (optional) Account used to verify the operation

78 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

finalizeOp (ops, account, permission, **kwargs)
This method obtains the required private keys if present in the wallet, finalizes the transaction, signs it and
broadacasts it

Parameters
* ops (operation)— The operation (or list of operaions) to broadcast
* account (operation)— The account that authorizes the operation
* permission (string) - The required permission for signing (active, owner, posting)

* append_to (object) — This allows to provide an instance of ProposalsBuilder (see
new_proposal ()) or TransactionBuilder (see new_tx ()) to specify where to put a
specific operation.

. note:: append_to is exposed to every method used in the this class

. note:

If ““ops’ " is a list of operation, they all need to be
signable by the same key! Thus, you cannot combine ops
that require active permission with ops that require
posting permission. Neither can you use different
accounts for different operations!

. note:: This uses txbuffer as instance of transactionbuilder.TransactionBuilder.
You may want to use your own txbuffer

info ()

Returns the global properties
is_connected ()
newWallet (pwd)

new_proposal (parent=None, proposer=None, proposal_expiration=None, proposal_review=None,
*rkwargs)

new_tx (*args, **kwargs)
Let’s obtain a new txbuffer

Returns int txid id of the new txbuffer

new_wallet (pwd)
Create a new wallet. This method is basically only calls wallet .Wallet.create ().

Parameters pwd (st r)— Password to use for the new wallet
Raises exceptions.WalletExists —if there is already a wallet created

nft_approve (operator_, approved, token_id, **kwargs)

nft_metadata_create (owner_account_id_or_name, name, symbol, base_uri, rev-
enue_partner=None, revenue_split=200, is_transferable=True,
is_sellable=True, role_id=None, max_supply=None, lot-

tery_options=None, **kwargs)

nft_metadata_update (owner_account_id_or_name, nft_metadata_id, name, symbol, base_uri,
revenue_partner=None, revenue_split=200, is_transferable=True,
is_sellable=True, role_id=None, **kwargs)

5.1.

peerplays 79

python-peerplays Documentation, Release 0.1

nft_mint (metadata_owner_account_id_or_name, metadata_id, owner_account_id_or_name, ap-
proved_account_id_or_name, approved_operators, token_uri, **kwargs)

nft_safe_transfer_ from (operator_, from_, to_, token_id, data, **kwargs)
nft_set_approval_for_ all (owner, operator_, approved, **kwargs)

prefix
Contains the prefix of the blockchain

propbuffer
Return the default proposal buffer

proposal (proposer=None, proposal_expiration=None, proposal_review=None)
Return the default proposal buffer

. note:: If any parameter is set, the default proposal parameters will be changed!

set_blocking (block=True)
This sets a flag that forces the broadcast to block until the transactions made it into a block

set_default_account (account)
Set the default account to be used

set_shared_instance ()
This method allows to set the current instance as default

sign (tx=None, wifs=[])
Sign a provided transaction witht he provided key(s)

Parameters
* tx (dict)— The transaction to be signed and returned

* wifs (string)— One or many wif keys to use for signing a transaction. If not present,
the keys will be loaded from the wallet as defined in “missing_signatures” key of the
transactions.

sport_create (names, account=None, **kwargs)
Create a sport. This needs to be proposed.

Parameters
* names (list) — Internationalized names, e.g. [['de', 'Foo'l, ['en',
'bar']]
* account (str) — (optional) the account to allow access to (defaults to

default_account)

sport_delete (sport_id="0.0.0’, account=None, **kwargs)
Remove a sport. This needs to be proposed.

Parameters
* sport_id (str)— Sport ID to identify the Sport to be deleted
* account (str) — (optional) Account used to verify the operation

sport_update (sport_id, names=[], account=None, **kwargs)
Update a sport. This needs to be proposed.

Parameters
* sport_id (str) - The id of the sport to update

* names (list) — Internationalized names, e.g. [['de', 'Foo']l, ['en',
'bar']]

80 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

* account (str) — (optional) the account to allow access to (defaults to
default_account)

transfer (to, amount, asset, memo=", account=None, **kwargs)
Transfer an asset to another account.

Parameters
* to (str)— Recipient
e amount (float)— Amount to transfer
¢ asset (str) - Asset to transfer
* memo (str) — (optional) Memo, may begin with # for encrypted messaging

* account (str) - (optional) the source account for the transfer if not
default_account

tx ()
Returns the default transaction buffer

txbuffer
Returns the currently active tx buffer

unlock (*args, ¥**kwargs)
Unlock the internal wallet

update_memo_key (key, account=None, **kwargs)
Update an account’s memo public key

This method does not add any private keys to your wallet but merely changes the memo public key.
Parameters
* key (str)— New memo public key

* account (str) - (optional) the account to allow access to (defaults to
default_account)

upgrade_account (account=None, **kwargs)
Upgrade an account to Lifetime membership

Parameters account (str) — (optional) the account to allow access to (defaults to
default_account)

peerplays.peerplays2 module

class peerplays.peerplays?.PeerPlays (urlWalletServer)
Bases: object

This class is http endpoint based implementation of peerplays operations : param str urlWalletServer: Re-
mote wallet server

from peerplays.peerplays2 import PeerPlays as PeerPlays2
peerplays2 = PeerPlays2 (urlWalletServer=urlWalletServer)

where <urlWalletServer> starts with http:// orhttps://.
The purpose of this class it to simplify interaction with a few of the new PeerPlays features and changes.

The idea is to have a class that allows to do this

5.1. peerplays 81

python-peerplays Documentation, Release 0.1

WalletCall (method, params=[])
Genric method for making calls to peerplays node through remote wallet. :param str method: Name of the
cli_wallet command to call :param str params: Parameters to the command

create_account (account_name, registrar="None’, referrer="1.2.0°, referrer_percent=50,
owner_key=None, active_key=None, memo_key=None)
Create new account. This method is more for back compatibility :param str accountName: New account
name :param str ownerKey: Owner key :param str activeKey: Active key :param str registrAccount: Reg-
istrar :param str referreAccount: Referrer :param str referrerPercent: Referrer percent

import_key (accountName, wif)
Import keys to the wallet :param str accountName: AccoutName :param strr wif: WIF of the account

info ()
Info command

is_locked()
Check if wallet is locked

register_account (accountName, ownerKey, activeKey, registrarAccount, referrerAccount, refer-

rerPercent)
Create new account :param str accountName: New account name :param str ownerKey: Owner key :param

str activeKey: Active key :param str registrAccount: Registrar :param str referreAccount: Referrer :param
str referrerPercent: Referrer percent

set_password (password)
Set remote wallet password param str password: New wallet password

suggest_brain_key ()

unlock (password)
Method to unlock wallet :param str password: Remote wallet password

wallet_server ()

wallet_server_ start ()

peerplays.price module

class peerplays.price.FilledOrder (order, **kwargs)

Bases: peerplays.price.Price

This class inherits peerplays.price.Price but has the base and quote Amounts not only be used to
represent the price (as a ratio of base and quote) but instead has those amounts represent the amounts of an
actually filled order!

Parameters blockchain_instance (peerplays.peerplays.PeerPlays)— PeerPlays
instance

Note: Instances of this class come with an additional t ime key that shows when the order has been filled!

as_base (base)
Returns the price instance so that the base asset is base.

Note: This makes a copy of the object!

as_quote (quote)
Returns the price instance so that the quote asset is quote.

Note: This makes a copy of the object!

82

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

blockchain

blockchain_instance_class
alias of peerplays. instance.BlockchainInstance

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.
copy () — a shallow copy of D

define classes ()
Needs to define instance variables that provide classes

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

classmethod inject (cls)

invert ()
Invert the price (e.g. go from USD/BTS into BTS/USD)

items () — a set-like object providing a view on D’s items

json ()
return { “base”: self[“base”].json(), “quote”: self[“quote”].json()
}

keys () — aset-like object providing a view on D’s keys

market
Open the corresponding market.

Returns Instance of peerplays.market.Market for the corresponding pair of assets.

peerplays
Alias for the specific blockchain

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared_instance ()
This method allows to set the current instance as default

5.1. peerplays 83

python-peerplays Documentation, Release 0.1

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared blockchain instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

symbols ()

update ([E] **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

class peerplays.price.Order (*args, **kwargs)

Bases: peerplays.price.Price

This class inherits peerplays.price.Price but has the base and quote Amounts not only be used to
represent the price (as a ratio of base and quote) but instead has those amounts represent the amounts of an
actual order!

Parameters blockchain_instance (peerplays.peerplays.PeerPlays)— PeerPlays
instance

Note: If an order is marked as deleted, it will carry the ‘deleted’ key which is set to True and all other data be
None.

as_base (base)
Returns the price instance so that the base asset is base.

Note: This makes a copy of the object!

as_quote (quote)
Returns the price instance so that the quote asset is quote.

Note: This makes a copy of the object!
blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.
copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

for_sale

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

84

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

classmethod inject (cls)

invert ()
Invert the price (e.g. go from USD/BTS into BTS/USD)

items () — a set-like object providing a view on D’s items

json ()
return { “base”: self[“base”].json(), “quote”: self[“quote”].json()
}

keys () — a set-like object providing a view on D’s keys

market
Open the corresponding market.

Returns Instance of peerplays.market.Market for the corresponding pair of assets.

peerplays
Alias for the specific blockchain

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

price

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared_instance ()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

symbols ()
to_buy

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

5.1.

peerplays 85

python-peerplays Documentation, Release 0.1

class peerplays.price.Price (*args, **kwargs)
Bases: peerplays.instance.BlockchainInstance, peerplays.price.Price

This class deals with all sorts of prices of any pair of assets to simplify dealing with the tuple:

(quote, base)

each being an instance of :class: peerplays.amount.Amount . The
amount themselves define the price.

note::
The price (floating) is derived as " “base/quote’’

:param list args: Allows to deal with different representations of a price
:param peerplays.asset.Asset base: Base asset

:param peerplays.asset.Asset quote: Quote asset

:param peerplays.peerplays.PeerPlays blockchain_instance: PeerPlays instance
:returns: All data required to represent a price

:rtype: dict

Way to obtain a proper instance:

* “Targs’ " is a str with a price and two assets

* " “args’ ~ can be a floating number and "~ “base’ and " “quote " being,
—instances of :class: peerplays.asset.Asset’

* ~targs’ "~ can be a floating number and "~ “base’ " and "~ ~quote "~ being,
—instances of " str°

* ~args’ "~ can be dict with keys " “price’ ', "‘base ", and "~ “quote |
— (xgraphene balancesx)

% ~args’ " can be dict with keys " “base’ " and "~ ~quote "

* ~args’ " can be dict with key " “receives' ' (filled orders)

* “args’ being a list of " [quote, base] ' both being instances of
—:class: peerplays.amount.Amount’

* ~args’’ being a list of "' [quote, base] both being instances of " str’ " |
< (" “amount symbol® ")

* ~"base’’ and " “quote ' being instances of :class: peerplays.asset.Amount’

This allows instanciations like:

* " "Price("0.315 BTC/PPY") " "
* " "Price(0.315, base="BTC", quote="PPY") "
% " "Price(0.315, base=Asset ("BTC"), quote=Asset ("PPY")) "~

% " "Price({"base": {"amount": 1, "asset_id": "1.3.0"}, "quote": {"amount": 10,
—"asset_id": "1.3.106"}}) °

« " "Price({"receives": {"amount": 1, "asset_id": "1.3.0"}, "pays": {"amount": 10,
—~"asset_id": "1.3.106"}}, base_asset=Asset ("1.3.0"))" "

* ~"Price(quote="10 GOLD", base="1 BTC") °

* " "Price("10 GOLD", "1 BTC") °

* ~"Price (Amount ("10 GOLD"), Amount ("1 BTC"))

* " “Price (1.0, "BTC/GOLD") "

Instances of this class can be used in regular mathematical expressions
(> +-%/%>") such as:

code-block:: python

>>> from peerplays.price import Price

(continues on next page)

86 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

(continued from previous page)

>>> Price("0.3314 BTC/PPY") * 2
0.662600000 BTC/PPY

as_base (base)
Returns the price instance so that the base asset is base.

Note: This makes a copy of the object!

as_quote (quote)
Returns the price instance so that the quote asset is quote.

Note: This makes a copy of the object!
blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.
copy () — a shallow copy of D

define_ classes ()
Needs to define instance variables that provide classes

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

classmethod inject (cls)

invert ()
Invert the price (e.g. go from USD/BTS into BTS/USD)

items () — aset-like object providing a view on D’s items

json ()
return { “base”: self[“base”].json(), “quote”: self[“quote”].json()
}

keys () — aset-like object providing a view on D’s keys

market
Open the corresponding market.

Returns Instance of peerplays.market .Market for the corresponding pair of assets.

peerplays
Alias for the specific blockchain

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

5.1.

peerplays 87

python-peerplays Documentation, Release 0.1

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared_instance ()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

symbols ()

update ([E] **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

class peerplays.price.PriceFeed (*args, **kwargs)
Bases: peerplays.instance.BlockchainInstance, peerplays.price.PriceFeed

This class is used to represent a price feed consisting of.
* a witness,
* asymbol,
* acore exchange rate,
¢ the maintenance collateral ratio,
¢ the max short squeeze ratio,
* a settlement price, and
e adate
Parameters blockchain_instance (peerplays.peerplays.PeerPlays)— PeerPlays
instance
blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.
copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

88 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

classmethod inject (cls)
items () — aset-like object providing a view on D’s items
keys () — a set-like object providing a view on D’s keys

peerplays
Alias for the specific blockchain

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

class peerplays.price.UpdateCallOrder (call, **kwargs)
Bases: peerplays.price.Price

This class inherits peerplays.price.Price but has the base and quote Amounts not only be used to
represent the call price (as a ratio of base and quote).

Parameters blockchain_instance (peerplays.peerplays.PeerPlays)— PeerPlays
instance

as_base (base)
Returns the price instance so that the base asset is base.

Note: This makes a copy of the object!

5.1. peerplays 89

python-peerplays Documentation, Release 0.1

as_dquote (quote)
Returns the price instance so that the quote asset is quote.

Note: This makes a copy of the object!
blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.
copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

classmethod inject (cls)

invert ()
Invert the price (e.g. go from USD/BTS into BTS/USD)

items () — a set-like object providing a view on D’s items

json ()
return { “base”: self[*“base”].json(), “quote”: self[“quote’].json()
}

keys () — a set-like object providing a view on D’s keys

market
Open the corresponding market.

Returns Instance of peerplays.market .Market for the corresponding pair of assets.

peerplays
Alias for the specific blockchain

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

90

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

set_shared instance()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

symbols ()

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

peerplays.proposal module

class peerplays.proposal .Proposal (*args, **kwargs)

Bases: peerplays.instance.BlockchainInstance, peerplays.proposal.Proposal
Read data about a Proposal Balance in the chain
Parameters
* id (str)—1d of the proposal

* blockchain_instance (peerplays) — peerplays() instance to use when accesing a
RPC

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

classmethod cache_object (data, key=None)
This classmethod allows to feed an object into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.

classmethod clear_ cache ()
Clear/Reset the entire Cache

copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

expiration

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

5.1.

peerplays 91

python-peerplays Documentation, Release 0.1

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

classmethod inject (cls)
is _in review

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

keys () — aset-like object providing a view on D’s keys

static objectid_vwvalid (i)
Test if a string looks like a regular object id of the form::

XXXX.YYYVY.2222Z

with those being numbers.

peerplays
Alias for the specific blockchain

perform_id tests = True

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

proposed_operations

proposer
Return the proposer of the proposal if available in the backend, else returns None

refresh ()
review_period
static set_cache_store (klass, *args, **kwargs)

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance ()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

92

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

shared blockchain_ instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

space_id =1

store (data, key="id’)
Cache the list

Parameters data (1ist)— List of objects to cache

test_valid_objectid (i)
Alias for objectid_valid

testid (id)
In contrast to validity, this method tests if the objectid matches the type_id provided in self.type_id or
self.type_ids

type_id = None
type_ids = []

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

class peerplays.proposal.Proposals (*args, **kwargs)

Bases: peerplays.instance.BlockchainInstance, peerplays.proposal.Proposals
Obtain a list of pending proposals for an account
Parameters
e account (str)— Account name

* blockchain_instance (peerplays) — peerplays() instance to use when accesing a
RPC

append ()
Append object to the end of the list.

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

cache (key)
(legacy) store the current object with key key.

classmethod cache_objects (data, key=None)
This classmethod allows to feed multiple objects into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear ()
Remove all items from list.

classmethod clear cache ()
Clear/Reset the entire Cache

copy ()
Return a shallow copy of the list.

5.1.

peerplays 93

python-peerplays Documentation, Release 0.1

count ()
Return number of occurrences of value.

define_classes ()
Needs to define instance variables that provide classes

extend ()
Extend list by appending elements from the iterable.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

index ()
Return first index of value.

Raises ValueError if the value is not present.
classmethod inject (cls)

insert ()
Insert object before index.

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

peerplays
Alias for the specific blockchain

pop ()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

refresh (*args, **kwargs)
Interface that needs to be implemented. This method is called when an object is requested that has not yet
been fetched/stored

remove ()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse ()
Reverse IN PLACE.

static set_cache_store (klass, *args, **kwargs)

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

94

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

set_shared instance()
This method allows to set the current instance as default

shared_blockchain_instance ()
This method will initialize SharedInstance. instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

sort ()
Stable sort IN PLACE.

store (data, key=None, *args, **kwargs)
Cache the list

Parameters data (1ist)— List of objects to cache

peerplays.rule module

class peerplays.rule.Rule (*args, **kwargs)
Bases: peerplays.blockchainobject.BlockchainObject

Read data about a Rule object
Parameters
e identifier (str) - Identifier for the rule

* blockchain_instance (peerplays) — PeerPlays() instance to use when accesing a
RPC

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

classmethod cache_object (data, key=None)
This classmethod allows to feed an object into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.

classmethod clear cache()
Clear/Reset the entire Cache

copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

grading

5.1. peerplays 95

python-peerplays Documentation, Release 0.1

identifier = None

incached (id)
Is an element cached?

classmethod inject (cls)

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

keys () — aset-like object providing a view on D’s keys

static objectid_wvalid (i)
Test if a string looks like a regular object id of the form::

XXXX.YYYVY.2222Z

with those being numbers.

peerplays
Alias for the specific blockchain

perform_id tests = True

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

refresh ()
static set_cache_store (klass, *args, **kwargs)

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

space_id =1

store (data, key="id’)
Cache the list

Parameters data (1ist)— List of objects to cache

test_valid_objectid (i)
Alias for objectid_valid

96

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

testid (id)

In contrast to validity, this method tests if the objectid matches the type_id provided in self.type_id or

self.type_ids
type_id = 23
type_ids = []
update ([E], **F) — None. Update D from dict/iterable E and F.

If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

class peerplays.rule.Rules (*args, limit=1000, **kwargs)
Bases: peerplays.blockchainobject.BlockchainObjects, peerplays.instance.

BlockchainInstance
List of all Rules

append ()
Append object to the end of the list.

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

cache (key)
(legacy) store the current object with key key.

classmethod cache_objects (data, key=None)
This classmethod allows to feed multiple objects into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear ()
Remove all items from list.

classmethod clear cache ()
Clear/Reset the entire Cache

copy ()
Return a shallow copy of the list.

count ()
Return number of occurrences of value.

define_classes ()
Needs to define instance variables that provide classes

extend ()
Extend list by appending elements from the iterable.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

5.1.

peerplays

97

python-peerplays Documentation, Release 0.1

index ()
Return first index of value.

Raises ValueError if the value is not present.
classmethod inject (cls)

insert ()
Insert object before index.

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

peerplays
Alias for the specific blockchain

pop ()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

refresh (*args, **kwargs)
Interface that needs to be implemented. This method is called when an object is requested that has not yet
been fetched/stored

remove ()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse ()
Reverse IN PLACE.

static set_cache_store (klass, *args, **kwargs)

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

sort ()
Stable sort IN PLACE.

store (data, key=None, *args, **kwargs)
Cache the list

Parameters data (1ist)— List of objects to cache

peerplays.son module

class peerplays.son.Son (urlWitness)
Bases: object

98 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

This class is http endpoint based implementation of Son operations
create_son (account_name, url, sidechainPublicKeyListOfList)
delete_sidechain_address (account_name, sidechain)
heartbeat ()

is_locked ()

report_down ()

request_son_maintenance (account_name)
set_password (password)

sidechain_deposit_transaction (sidechain, transaction_id, operation_index, sidechain_from,
sidechain_to, sidechain_currency, siechain_amount, peer-
plays_from_name_or_id, peerplays_to_name_or_id)

params: const sidechain_type& sidechain, const string &transaction_id, uint32_t operation_index,
const string &sidechain_from, const string &sidechain_to, const string &sidechain_currency,
int64_t sidechain_amount, const string &peerplays_from_name_or_id, const string &peer-
plays_to_name_or_id

sidechain_withdrawal_transaction (son_name, block_num, sidechain, peerplays_uid,
peerplays_transaction_id, peerplays_from, width-
draw_sidechain, widthdraw_address, width-
draw_currency, widthdraw_amount)

unlock (password)
update_son (account_name, url, sidechainPublicKeyListOfList)

update_son_votes (voting_account, sons_to_approve, sons_to_reject, sidechain, de-
sired_number_of _sons)

params: string voting_account, sons_to_approve, sons_to_reject, sidechain, desired_number_of_sons

update_witness_votes (voting_account, witnesses_to_approve, witnesses_to_reject, de-
sired_number_of_witnesses)

params: voting_account, witnesses_to_approve, witnesses_to_reject, desired_number_of_witnesses,
vote_for_son (voting_account, son, sidechain, approve)

params: string voting_account, string son, string sidechain, bool approve, bool broadcast
vote_for_ witness (voting_account, witness, approve)

params: string voting_account, string witness, bool approve, bool broadcast

peerplays.son.WalletCall (method, params=[])

peerplays.sport module

class peerplays.sport.Sport (*args, **kwargs)

Bases: peerplays.blockchainobject.BlockchainObject
Read data about a sport on the chain
Parameters

e identifier (str) - Identifier

5.1. peerplays 99

python-peerplays Documentation, Release 0.1

* blockchain_instance (peerplays) — PeerPlays() instance to use when accesing a

RPC
blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

classmethod cache_object (data, key=None)
This classmethod allows to feed an object into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.

classmethod clear_ cache ()
Clear/Reset the entire Cache

copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

eventgroups

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

classmethod inject (cls)

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

keys () — a set-like object providing a view on D’s keys

static objectid_wvalid (i)
Test if a string looks like a regular object id of the form::

XXXX.YYYVY.2222

with those being numbers.

peerplays
Alias for the specific blockchain

perform_id tests = True

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

100

Chapter 5.

Packages

python-peerplays Documentation, Release 0.1

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

refresh ()
static set_cache_store (klass, *args, **kwargs)

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared_instance ()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared_blockchain_ instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

space_id =1

store (data, key="id’)
Cache the list

Parameters data (1ist)— List of objects to cache

test_valid_objectid (i)
Alias for objectid_valid

testid (id)
In contrast to validity, this method tests if the objectid matches the type_id provided in self.type_id or
self.type_ids

type_id = 20
type_ids = []

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

class peerplays.sport.Sports (*args, **kwargs)
Bases: peerplays.blockchainobject.BlockchainObjects, peerplays.instance.
BlockchainInstance

List of all available sports

append ()
Append object to the end of the list.

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

5.1. peerplays 101

python-peerplays Documentation, Release 0.1

cache (key)
(legacy) store the current object with key key.

classmethod cache_objects (data, key=None)
This classmethod allows to feed multiple objects into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear ()
Remove all items from list.

classmethod clear_ cache()
Clear/Reset the entire Cache

copy ()
Return a shallow copy of the list.

count ()
Return number of occurrences of value.

define_classes ()
Needs to define instance variables that provide classes

extend ()
Extend list by appending elements from the iterable.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

index ()
Return first index of value.

Raises ValueError if the value is not present.
classmethod inject (cls)

insert ()
Insert object before index.

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

peerplays
Alias for the specific blockchain

pop ()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

refresh (*args, **kargs)
Interface that needs to be implemented. This method is called when an object is requested that has not yet
been fetched/stored

remove ()
Remove first occurrence of value.

102 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

Raises ValueError if the value is not present.

reverse ()
Reverse IN PLACE.

static set_cache_store (klass, *args, **kwargs)

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared_instance ()
This method allows to set the current instance as default

shared blockchain instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

sort ()
Stable sort IN PLACE.

sports
DEPRECATED

store (data, key=None, *args, **kwargs)
Cache the list

Parameters data (1ist)— List of objects to cache

peerplays.storage module

peerplays.storage.get_default_config_store (*args, **kwargs)

peerplays.storage.get_default_key_store (config, *args, **kwargs)

peerplays.transactionbuilder module

class peerplays.transactionbuilder.ProposalBuilder (*args, **kwargs)

Bases: peerplays.instance.BlockchainInstance, peerplays.transactionbuilder.
ProposalBuilder

Proposal Builder allows us to construct an independent Proposal that may later be added to an instance ot
TransactionBuilder

Parameters
* proposer (str)— Account name of the proposing user

* proposal_expiration (int)— Number seconds until the proposal is supposed to ex-
pire

* proposal_review (int)— Number of seconds for review of the proposal

* transactionbuilder.TransactionBuilder — Specify your own instance of
transaction builder (optional)

5.1.

peerplays 103

python-peerplays Documentation, Release 0.1

* blockchain_instance (instance)— Blockchain instance

appendOps (ops, append_to=None)
Append op(s) to the transaction builder

Parameters ops (1ist)— One or a list of operations
blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

broadcast ()

chain
Short form for blockchain (for the lazy)

define_classes ()
Needs to define instance variables that provide classes

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

get_parent ()
This allows to referr to the actual parent of the Proposal

get_raw ()
Returns an instance of base “Operations” for further processing

classmethod inject (cls)
is_empty ()

json ()
Return the json formated version of this proposal

list_operations ()

peerplays
Alias for the specific blockchain

set_expiration (p)
set_parent (p)
set_proposer (p)
set_review (p)

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared_instance ()
This method allows to set the current instance as default

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

104

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

class peerplays.transactionbuilder.TransactionBuilder (*args, **kwargs)

Bases: peerplays.instance.BlockchainInstance, peerplays.transactionbuilder.
TransactionBuilder

This class simplifies the creation of transactions by adding operations and signers.

addSigningInformation (account, permission)
This is a private method that adds side information to a unsigned/partial transaction in order to simplify
later signing (e.g. for multisig or coldstorage)

FIXME: Does not work with owner keys!

add_required_fees (ops, asset_id="1.3.0")
Auxiliary method to obtain the required fees for a set of operations. Requires a websocket connection to a
witness node!

appendMissingSignatures ()
Store which accounts/keys are supposed to sign the transaction

This method is used for an offline-signer!

appendOps (ops, append_to=None)
Append op(s) to the transaction builder

Parameters ops (1ist)— One or a list of operations

appendSigner (accounts, permission)
Try to obtain the wif key from the wallet by telling which account and permission is supposed to sign the
transaction
Parameters
* accounts (str, list, tuple, set)— accounts to sign transaction with

ermission (str)— ission, e.g. “active”, “ow
°p t type of permission, e.g. “active”, “owner” etc

appendWif (wif)
Add a wif that should be used for signing of the transaction.

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

broadcast ()
Broadcast a transaction to the blockchain network

Parameters tx (tx)— Signed transaction to broadcast

chain
Short form for blockchain (for the lazy)

clear ()
Clear the transaction builder and start from scratch

constructTx ()
Construct the actual transaction and store it in the class’s dict store

copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

5.1.

peerplays 105

python-peerplays Documentation, Release 0.1

get ()
Return the value for key if key is in the dictionary, else default.

get_block_params (use_head_block=False)
Auxiliary method to obtain ref_block_numand ref_block_prefix. Requires a websocket con-
nection to a witness node!

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

get_parent ()
TransactionBuilders don’t have parents, they are their own parent

classmethod inject (cls)
is_empty ()
items () — a set-like object providing a view on D’s items

json ()
Show the transaction as plain json

keys () — a set-like object providing a view on D’s keys
list_operations ()

peerplays
Alias for the specific blockchain

permission_types = ['active', 'owner']

Pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

set_expiration (p)

set_fee_asset (fee_asset)
Set asset to fee

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

shared blockchain_ instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

sign ()
Sign a provided transaction with the provided key(s)

106 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

Parameters
* tx (dict) — The transaction to be signed and returned

* wifs (string)— One or many wif keys to use for signing a transaction. If not present,
the keys will be loaded from the wallet as defined in “missing_signatures” key of the
transactions.

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

verify authority ()
Verify the authority of the signed transaction

peerplays.utils module

peerplays.utils.dList2Dict (/)
peerplays.utils.dict2dList (/)

peerplays.utils.map2dict (darray)
Reformat a list of maps to a dictionary

peerplays.utils.test_proposal_in_buffer (buf, operation_name, id)

peerplays.wallet module

class peerplays.wallet.Wallet (*args, **kwargs)
Bases: peerplays.instance.BlockchainInstance, peerplays.wallet.Wallet

addPrivateKey (wif)
Add a private key to the wallet database

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

chain
Short form for blockchain (for the lazy)

changePassphrase (new_pwd)
Change the passphrase for the wallet database

create (pwd)
Alias for newWallet()

created ()
Do we have a wallet database already?

define classes ()
Needs to define instance variables that provide classes

getAccountFromPrivateKey (wif)
Obtain account name from private key

getAccountFromPublicKey (pub)
Obtain the first account name from public key

5.1. peerplays 107

python-peerplays Documentation, Release 0.1

getAccounts ()
Return all accounts installed in the wallet database

getAccountsFromPublicKey (pub)
Obtain all accounts associated with a public key

getActiveKeyForAccount (name)
Obtain owner Active Key for an account from the wallet database

getAllAccounts (pub)
Get the account data for a public key (all accounts found for this public key)

getKeyType (account, pub)
Get key type

getMemoKeyForAccount (name)
Obtain owner Memo Key for an account from the wallet database

getOwnerKeyForAccount (name)
Obtain owner Private Key for an account from the wallet database

getPrivateKeyForPublicKey (pub)
Obtain the private key for a given public key

Parameters pub (str)— Public Key

getPublicKeys (current=False)
Return all installed public keys

Parameters current (bool) - If true, returns only keys for currently connected blockchain

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

classmethod inject (cls)

is_encrypted()
Is the key store encrypted?

lock ()
Lock the wallet database

locked ()
Is the wallet database locked?

newWallet (pwd)
Create a new wallet database

peerplays
Alias for the specific blockchain

prefix
privatekey (key)
publickey from wif (wif)

removeAccount (account)
Remove all keys associated with a given account

removePrivateKeyFromPublicKey (pub)
Remove a key from the wallet database

rpc

108

Chapter 5. Packages

python-peerplays Documentation, Release 0.1

setKeys (loadkeys)
This method is strictly only for in memory keys that are passed to Wallet with the keys argument

classmethod set_shared_blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance()
This method allows to set the current instance as default

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

unlock (pwd)
Unlock the wallet database

unlocked ()
Is the wallet database unlocked?

wipe (sure=False)

peerplays.witness module

class peerplays.witness.Witness (*args, **kwargs)

Bases: peerplays.instance.BlockchainInstance, peerplays.witness.Witness
Read data about a witness in the chain
Parameters
¢ account_name (str)— Name of the witness

* blockchain_instance (peerplays) — peerplays() instance to use when accesing a
RPC

account
blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

classmethod cache_object (data, key=None)
This classmethod allows to feed an object into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear () — None. Remove all items from D.

classmethod clear_ cache()
Clear/Reset the entire Cache

copy () — a shallow copy of D

define_classes ()
Needs to define instance variables that provide classes

5.1.

peerplays 109

python-peerplays Documentation, Release 0.1

fromkeys ()
Create a new dictionary with keys from iterable and values set to value.

get ()
Return the value for key if key is in the dictionary, else default.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

classmethod inject (cls)
is_active

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

keys () — aset-like object providing a view on D’s keys

static objectid_valid (i)
Test if a string looks like a regular object id of the form::

XXXX.YYYVY.2222Z

with those being numbers.

peerplays
Alias for the specific blockchain

perform_id tests = True

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

refresh ()
static set_cache_store (klass, *args, **kwargs)

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

classmethod set_shared config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared instance ()
This method allows to set the current instance as default

setdefault ()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

110 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

shared blockchain_ instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

space_id =1

store (data, key="id’)
Cache the list

Parameters data (1ist)— List of objects to cache

test_valid_objectid (i)
Alias for objectid_valid

testid (id)
In contrast to validity, this method tests if the objectid matches the type_id provided in self.type_id or
self.type_ids

type_id = None
type_ids = []

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

weight

class peerplays.witness.Witnesses (*args, **kwargs)

Bases: peerplays.instance.BlockchainInstance, peerplays.witness.Witnesses
Obtain a list of active witnesses and the current schedule
Parameters
* only active (bool) - (False) Only return witnesses that are actively producing blocks

* blockchain_instance (peerplays) — peerplays() instance to use when accesing a
RPC

append ()
Append object to the end of the list.

blockchain

blockchain_instance_class
alias of peerplays.instance.BlockchainInstance

cache (key)
(legacy) store the current object with key key.

classmethod cache_objects (data, key=None)
This classmethod allows to feed multiple objects into the cache is is mostly used for testing

chain
Short form for blockchain (for the lazy)

clear ()
Remove all items from list.

classmethod clear_ cache ()
Clear/Reset the entire Cache

5.1.

peerplays 111

python-peerplays Documentation, Release 0.1

copy ()
Return a shallow copy of the list.

count ()
Return number of occurrences of value.

define classes ()
Needs to define instance variables that provide classes

extend ()
Extend list by appending elements from the iterable.

get_instance_class ()
Should return the Chain instance class, e.g. peerplays.PeerPlays

getfromcache (id)
Get an element from the cache explicitly

identifier = None

incached (id)
Is an element cached?

index ()
Return first index of value.

Raises ValueError if the value is not present.
classmethod inject (cls)

insert ()
Insert object before index.

items ()
This overwrites items() so that refresh() is called if the object is not already fetched

peerplays
Alias for the specific blockchain

pop ()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

refresh (*args, **kwargs)
Interface that needs to be implemented. This method is called when an object is requested that has not yet
been fetched/stored

remove ()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse ()
Reverse IN PLACE.

static set_cache_store (klass, *args, **kwargs)

classmethod set_shared blockchain_instance (instance)
This method allows us to override default instance for all users of SharedInstance.instance.

Parameters instance (chaininstance)— Chain instance

112 Chapter 5. Packages

python-peerplays Documentation, Release 0.1

classmethod set_shared_config (config)
This allows to set a config that will be used when calling shared_blockchain_instance and allows
to define the configuration without requiring to actually create an instance

set_shared_instance ()
This method allows to set the current instance as default

shared_blockchain_instance ()
This method will initialize SharedInstance.instance and return it. The purpose of this method is
to have offer single default instance that can be reused by multiple classes.

sort ()
Stable sort IN PLACE.

store (data, key=None, *args, **kwargs)
Cache the list

Parameters data (1ist)— List of objects to cache

Module contents

5.2 peerplaysbase

5.2. peerplaysbase 113

python-peerplays Documentation, Release 0.1

114 Chapter 5. Packages

CHAPTER O

Tutorials

6.1 Tutorials

6.1.1 Building PeerPlays Node

Downloading the sources

The sources can be downloaded from:

https://github.com/peerplays—network/peerplays

Dependencies

Development Toolkit

The following dependencies were necessary for a clean install of Ubuntu 16.10:

sudo apt-get update

sudo apt-get install gcc-5 g++-5 gcc g++ cmake make \
libbz2-dev libdb++-dev libdb-dev \
libssl-dev openssl libreadline-dev \
autotools—-dev build-essential \
g++ libbz2-dev libicu-dev python-dev \
autoconf libtool git

Boost 1.60

You need to download the Boost tarball for Boost 1.60.0.

115

python-peerplays Documentation, Release 0.1

export BOOST_ROOT=SHOME/opt/boost_1.60.0
wget —-c 'http://sourceforge.net/projects/boost/files/boost/1.60.0/boost_1.60.0.tar.
—bz2/download'\
-0 boost_1.60.0.tar.bz2
tar xjf boost_1.60.0.tar.bz2
cd boost_1.60.0/
./bootstrap.sh "—-—prefix=5SBOOST_ROOT"
./b2 install

Building PeerPlays

After downloading the PeerPlays sources we can run cmake for configuration and compile with make:

cd peerplays

export CC=gcc-5 CXX=g++-5
cmake —-DBOOST_ROOT="SBOOST_ROOT" -DCMAKE_BUILD_TYPE=Debug
make

Note that the environmental variable $BOOST_ROOT should point to your install directory of boost if you have in-
stalled it manually (see first line in the previous example)

Binaries

After compilation, the binaries are located in:

./programs/witness_node
./programs/cli_wallet
./programs/delayed_node

6.1.2 Howto Interface your Exchange with PeerPlays
This Howto serves as an introduction for exchanges that want to interface with PeerPlays to allow trading of assets
from the PeerPlays network.

We here start by introducing the overall concept of trusted node setup, having different APIs that reply in JSON and
describe the structure of the received information (blocks etc).

Afterwards, we will go into more detail w.r.t. to the python-peerplays library that helps you deal with the blockchain
and can be seen as a full-featured wallet (to replace the cli-wallet).

Trusted Network and Client Configuration

Introduction

Similar to other crypto currencies, it is recommended to wait for several confirmations of a transcation. Even though
the consensus scheme of Graphene is alot more secure than regular proof-of-work or other proof-of-stake schemes,
we still support exchanges that require more confirmations for deposits.

We provide a so called delayed full node which accepts two additional parameters for the configuration besides those
already available with the standard daemon.

* trusted-node RPC endpoint of a trusted validating node (required)

116 Chapter 6. Tutorials

python-peerplays Documentation, Release 0.1

The trusted-node is a regular full node directly connected to the P2P network that works as a proxy. The delay between
the trusted node and the delayed node is chosen automatically in a way that ensures that blocks that are available in
the delayed node are guarenteed to be irreversible. Thus, the delayed full node will be behind the real blockchain by
a few seconds up to only a few minutes.

Note: Irrversibility: On DPOS chains, blocks are irreversible if it has been approved/confirmed by at least 2/3 of all
block validators (i.e. witnesses)

Overview of the Setup

In the following, we will setup and use the following network::

P2P network <-> Trusted Full Node <-> Delayed Full Node <-> API

* P2P network: The PeerPlays client uses a peer-to-peer network to connect and broadcasts transactions there. A
block producing full node will eventually catch your transcaction and validate it by adding it into a new block.

¢ Trusted Full Node: We will use a Full node to connect to the network directly. We call it trusted since it is
supposed to be under our control.

* Delayed Full Node: The delayed full node node will provide us with a delayed and several times confirmed and
verified blockchain. Even though DPOS is more resistant against forks than most other blockchain consensus
schemes, we delay the blockchain here to reduces the risk of forks even more. In the end, the delayed full node
is supposed to never enter an invalid fork.

* APIL: Since we have a delayed full node that we can fully trust, we will interface with this node to query the
blockchain and receive notifications from it once balance changes.

The delayed full node should be in the same local network as the trusted full node, however only the trusted full node
requires public internet access. Hence we will work with the following IPs:

* Trusted Full Node:
— extern: internet access
— intern: 192.168.0.100
* Delayed Full Node:
— extern: no internet access required
— intern: 192.168.0.101

Let’s go into more detail on how to set these up.

Trusted Full Node

For the trusted full node, the default settings can be used. Later, we will need to open the RPC port and listen to an IP
address to connect the delayed full node to:

./programs/witness_node/witness_node --rpc-endpoint="192.168.0.100:8090"

Note: A witness node is identical to a full node if no authorized block-signing private key is provided.

6.1. Tutorials 117

python-peerplays Documentation, Release 0.1

Delayed Full Node

The delayed full node will need the IP address and port of the p2p-endpoint from the trusted full node and the number
of blocks that should be delayed. We also need to open the RPC/Websocket port (to the local network!) so that we can
interface using RPC-JSON calls.

For our example and for 10 blocks delayed (i.e. 30 seconds for 3 second block intervals), we need::

./programs/delayed_node/delayed_node --trusted-node="192.168.0.100:8090" —-rpc—
—endpoint="192.168.0.101:8090"

We can now connect via RPC:
e 192.168.0.100:8090 : The trusted full node exposed to the internet
* 192.168.0.101:8090 : The delayed full node not exposed to the internet

Note: For security reasons, an exchange should only interface with the delayed full node.

For obvious reasons, the trusted full node is should be running before attempting to start the delayed full node.

Remote Procedure Calls

Prerequisits

This page assumes that you either have a full node or a wallet running and listening to port 8090, locally.

Note: The set of available commands depends on application you connect to.

Call Format

In Graphene, RPC calls are state-less and accessible via regular JSON formated RPC-HTTP-calls. The correct struc-
ture of the JSON call is

{

"Jsonrpc": "2.0",

"id": 1

"method": "get_accounts",
"params": [["1.2.0", "1.2.1"]11,

}

The get_accounts call is available in the Full Node’s database API and takes only one argument which is an
array of account ids (here: ["1.2.0", "1.2.1"]).

Example Call with curl

Such as call can be submitted via curl:

curl --data '{"Jjsonrpc":"2.0","method":"call", "params":[0, "get_accounts", [["1.2.0",
— "1.2.1"]1],"id":0}" https://ppy-node.bitshares.eu

118 Chapter 6. Tutorials

python-peerplays Documentation, Release 0.1

Successful Calls

The API will return a properly JSON formated response carrying the same id as the request to distinguish subsequent
calls.

{
"id":1,
"result": ..data..

}

Errors

In case of an error, the resulting answer will carry an error attribute and a detailed description:

{

"id": 0
"error": {
"data": {
"code": error-code,
"name": " .. name of exception .."
"message": " .. message of exception ..",
"stack": [.. stack trace ..],
} r
"code": 1,
} ’
}
Remarks

Wallet specific commands, such as t ransfer and market orders, are only available if connecting to c1i_wallet
because only the wallet has the private keys and signing capabilities and some calls will only execute of the wallet is
unlocked.

The full node offers a set of API(s), of which only the database calls are avaiable via RPC. Calls that are restricted
by default (i.e. network_node_api) or have been restricted by configuration are not accessible via RPC because
a statefull protocol (websocket) is required for login.

Interfacing via RPC and Websockets
Overview

APIs are separated into two categories, namely
* the Blockchain API which is used to query blockchain data (account, assets, trading history, etc.) and

 the CLI Wallet API which has your private keys loaded and is required when interacting with the blockchain
with new transactions.

Blockchain API

The blockchain API (as provided by the witness_node application), allows to read the blockchain.

6.1. Tutorials 119

python-peerplays Documentation, Release 0.1

from peerplaysapi.node import PeerPlaysNodeRPC
ppy = PeerPlaysNodeRPC ("wss://hostname™)

print (ppy.get_account_by_name ("init0"))

print (ppy.get_block (1))

Note: It is important to understand that the blockchain API does not know about private keys, and cannot sign

transactions for you. All it does is validate and broadcast transactions to the P2P network.

CLI Wallet API

The cli-wallet api, as provided by the c1i_wallet binary, allows to create and sign transactions and broadcast

them.

from peerplaysapi.wallet import PeerPlaysWalletRPC
rpc = PeerPlaysWalletRPC("localhost", 8090)
print (rpc.info())

Howto Monitor the blockchain for certain operations

Block Structure

A block takes the following form:

{'extensions': [],
'previous': '000583428a021bl4c02f0faaffl2ad4c686e475e3"',
'timestamp': '2017-04-21T08:38:35",
'"transaction_merkle_root': '328be3287f89%aad4d21c69cb617c4fcc372465493"',
'transactions': [{'expiration': '2017-04-21T08:39:03',
'extensions': [],
'operation_results': [[O0, {}11,
'operations': [
[OI
{'amount': {'amount': 100000,
'asset_id': '1.3.0'},
'extensions': [],
'fee': {'amount': 2089843,
'asset_id': '1.3.0'},
'from': '1.2.18"',
'memo': {'from':
—'"PPY18949UspGi6fZwnUmaeCPDZpkebmdTObHtKrd966M7qYz665xjr',
'message': '5d09c06c4794f9%cdef9d269774209%be",
'nonce': '7364013452905740719",
'to':
— 'PPY16MRYAJFQq8ud7hVNYcfnVPJIgcVpscN5So8Bht HUGYQETS5GDWSCV!' },
'to': '1.2.6'}]

]I
'ref_block_num': 33602,
'ref_block_prefix': 337314442,
'signatures': ['1f3755deaa7f9........ "1}v1.,
'witness': 'l.6.4",
'witness_signature': '2052571f091c4542........... '}

120 Chapter 6. Tutorials

python-peerplays Documentation, Release 0.1

Please note that a block can carry multiple transactions while each transaction carries multiple operations. Each
operation could be a transfer, or any other type of operation from a list of available operations. Technically, an
operation could be seen as a smart contract that comes with operation-specific side-information and results in some
changes in the blockchain database.

In the example above, the operation type is identified by the 0, which makes it a t ransfer and the structure after-
wards carries the transfer-specific side information, e.g. from, to accounts, fee aswell as the memo.

Polling Approach

Blocks can be polled with as little code as this:

from peerplays.blockchain import Blockchain

chain = Blockchain ()

for block in chain.blocks (start=START_BLOCK) :
print (block)

Note: chain.blocks () is a blocking call that will wait for new blocks and yield them to the for loop when they
arrive.

Alternatively, one can construct a loop that only yields the operations on the blockchain and does not show the block
structure:

from peerplays.blockchain import Blockchain

chain = Blockchain ()

for op in chain.ops (start=START_BLOCK) : # Note the ‘ops’
print (op)

If you are only interested in transfers, you may want to use this instead:

from peerplays.blockchain import Blockchain
chain = Blockchain ()
for transfer in chain.stream(opNames=["transfer"], start=START_BLOCK) : # Note the_
— ops’
print (transfer)

Warning: By default, the Blockchain () instance will only look at irrversible blocks, this means that blocks
are only considered if they are approved/signed by a majority of the witnesses and this lacks behind the head block
by a short period of time (in the seconds to low minutes).

Notification Approach

under construction

Decoding the Memo

In Peerplays, memos are usually encrypted using a distinct memo key. That way, exposing the memo private key will
only expose transaction memos (for that key) and not compromise any funds. It is thus safe to store the memo private
key in 3rd party services and scripts.

6.1. Tutorials 121

python-peerplays Documentation, Release 0.1

Obtaining memo wif key from cli_wallet

The memo public key can be obtained from the cli_wallet account settings or via command line::

’get_account myaccount ‘

in the cli wallet. The corresponding private key can be obtain from::

’get_private_key <pubkey> ‘

Note that the latter command exposes all private keys in clear-text wif.

That private key can be added to the pypeerplays wallet with:

from peerplays import PeerPlays

ppy = PeerPlays()

Create a new wallet if not yet exist
ppy.wallet.create("wallet-decrypt-password")
ppy.wallet.unlock ("wallet-decrypt-password")
ppy.wallet.addPrivateKey (" 5xxxxxxxxxxx")

Decoding the memo

The memo is encoded with a DH-shared secret key. We don’t want to go into too much detail here, but a simple python
module can help you here:

The encrypted memo can be decoded with:

from peerplays.memo import Memo

transfer_operation = {

'amount': {'amount': 100000, 'asset_id': '1.3.0'},

'extensions': [],

'fee': {'amount': 2089843, 'asset_id': '1.3.0'},

'from': '1.2.18"',

'memo': {'from': 'PPY1894jUspGi6fZwnUmaeCPDZpkebm4TObHtKrd966M7qYz665xjr",
'message': '5d09c06c4794f9bcdef9d269774209be",
'nonce': 7364013452905740719,
'to': '"PPY16MRYyAJQgB8ud7hVNYcfnVPJIqcVpscN5So8Bht HUGYgETS5GDWSCV!' },

'to': '1.2.6"}

memo = Memo (
transfer_operation["from"],
transfer_operation["to"],

)

memo .peerplays.wallet.unlock ("wallet—-decrypt-password")

print (memo.decrypt (transfer_operation["memo"]))

Alternatively, the ‘history’ command on the cli-wallet API, exposes the decrypted memo aswell.

6.1.3 Setup a witnhess and block producing node

After having setup a node, we can setup a witness and block producing node. We will need:
* A compiled witness_node
* Acompiled cli_wallet

* A registered account

122 Chapter 6. Tutorials

python-peerplays Documentation, Release 0.1

* The active private key to that account

* Some little funds to pay for witness registration in your account

Lunching the cli_wallet

We first need to launch the cli_wallet and setup a local wallet with it::

./programs/cli_wallet/cli_wallet —--server-rpc-endpoint wss://node-to-some-public-api-
—node

First thing to do is setting up a password for the newly created wallet prior to importing any private keys::

>>> set_password <password>
null

>>> unlock <password>

null

>>>

Basic Account Management

We can import your account with:

>>> import_key <accountname> <active wif key>
true

>>> list_my_accounts

[{

"id": "1.2.15",

"name": <accountname>,

1
>>> list_account_balances <accountname>
XXXXXXX PPY

Registering a Witness

To become a witness and be able to produce blocks, you first need to create a witness object that can be voted in.

We create a new witness by issuing::

>>> create_witness <accountname> "http://<url-to-proposal>" true
{
"ref _block_num": 139,
"ref_block_prefix": 3692461913,
"relative_expiration”: 3,
"operations": [[
21,1
"fee": {
"amount": O,
"asset_id": "1.3.0"
}I
"witness_account": "1.2.106",
"url": "url-to-proposal",

(continues on next page)

6.1. Tutorials 123

python-peerplays Documentation, Release 0.1

(continued from previous page)

"block_signing_key": "<PUBLIC KEY>",
"initial_secret": "00™
}
1
]I
"signatures": [

—"1f2ad5597af2acd4bf7a50f1eef2db49c9c0£7616718776624c2c09%9a2dd72a0c53a26e8c2bc928f783624¢4632924330fc!

n
—

]

The cli_wallet will create a new public key for signing <PUBLIC KEY>. We now need to obtain the private key for
that::

get_private_key <PUBLIC KEY>

Configuration of the Witness Node

Get the witness object using:

get_witness <witness—account>

and take note of two things. The id is displayed in get_global_properties when the witness is voted in, and
we will need it on the witness_node command line to produce blocks. We’ll also need the public signing_key

so we can look up the correspoinding private key.

>>> get_witness <accountname>
{
[...]
"id": "l1.6.10",
"signing_key": "GPH7vQ7GmRSJfDHxKdBmWMeDMFENPpmHWKN99J457BNApiX1T5TNM8",

[...]

The id and the signing_key are the two important parameters, here. Let’s get the private key for that signing key
with::

get_private_key <PUBLIC KEY>

Now we need to start the witness, so shut down the wallet (ctrl-d), and shut down the witness (ctrl-c). Re-launch the
witness, now mentioning the new witness 1.6.10 and its keypair::

./witness_node —-rpc-endpoint=127.0.0.1:8090 \
——witness—id '""1.6.10"" \
——private-key ' ["GPH7vQ7GmRSJfDHxKdBmWMeDMFENPpmMHWKN99J457BNApiX1T5TNMS

—", "5JGi7DM7J8fSTi1z724D9roNgd8dUcb5pirUe9taxYCUUsnvQ4zCaQ"]"'

Alternatively, you can also add this line into yout config.ini::

witness—-id = "1.6.10"
private-key = ["GPH7vQ7GmRSJfDHxKdABmWMeDMFENPpmHWKN99J457BNApiX1T5TNM8",

—"5JG17DM7J8£ST1izZ24D9roNgd8dUcSpirUe9tax¥YCUUsnvQ4zCaQ"]

124 Chapter 6. Tutorials

python-peerplays Documentation, Release 0.1

Note: Make sure to use YOUR public/private keys instead of the once given above!

Verifying Block Production

If you monitor the output of the witness_node, you should see it generate blocks signed by your witness::

Witness 1.6.10 production slot has arrived; generating a block now...
Generated block #367 with timestamp 2015-07-05T20:46:30 at time 2015-07-05T20:46:30

6.1. Tutorials 125

python-peerplays Documentation, Release 0.1

126 Chapter 6. Tutorials

CHAPTER /

Indices and tables

* genindex
* modindex

e search

127

python-peerplays Documentation, Release 0.1

128 Chapter 7. Indices and tables

Python Module Index

P

peerplays,

peerplays
peerplays
peerplays
peerplays
peerplays
peerplays

peerplays.
.blockchain, 40
.blockchainobject, 43
.cli, 17
.cli.account, 15
.cli.asset, 15
.cli.bookie, 15
.cli.bos, 15
.cli.cli, 15
.cli.committee, 15
.cli.decorators, 15
.cli.info, 16
.cli.main, 16
.cli.message, 16
.cli.proposal, 16
.cli.rpc, 16
.cli.ui, 16
.cli.wallet, 17
.cli.witness, 17
.committee, 46
.event, 48
.eventgroup, 52
.exceptions, 56

peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays

peerplays.
.instance, 61
.market, 62
.memo, 67
.message, 69
.notify, 70
.peerplays, 71
.peerplays?2, 8l

peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays

113

.account, 17

.amount, 21

.asset, 24

.bet, 26
.bettingmarket, 28
.bettingmarketgroup, 32

block, 36

genesisbalance, 58

peerplays.
peerplays.
peerplays.
peerplays.
peerplays.
peerplays.
peerplays.
peerplays.
peerplays.
.witness, 109

peerplays

price, 82
proposal, 91
rule, 95
son, 98
sport, 99
storage, 103

transactionbuilder, 103

utils, 107
wallet, 107

129

python-peerplays Documentation, Release 0.1

130 Python Module Index

Index

A

Account (class in peerplays.account), 17

account (peerplays.account.AccountUpdate attribute),
20

account (peerplays.committee. Committee attribute), 46

account (peerplays.witness.Witness attribute), 109

account_class (peerplays.account.AccountUpdate
attribute), 20

account_id (peerplays.committee.Committee at-
tribute), 46

AccountExistsException, 56

accountopenorders () (peerplays.market.Market
method), 62

accounttrades ()
method), 62

AccountUpdate (class in peerplays.account), 20

add_required_fees () (peer-
plays.transactionbuilder. TransactionBuilder
method), 105

addPrivateKey () (peerplays.wallet.Wallet method),
107

addSigningInformation () (peer-
plays.transactionbuilder. TransactionBuilder
method), 105

allow () (peerplays.peerplays.PeerPlays method), 72

Amount (class in peerplays.amount), 21

amount (peerplays.amount.Amount attribute), 22

append () (peerplays.bettingmarket. BettingMarkets
method), 30

(peerplays.market.Market

append () (peerplays.rule.Rules method), 97

append () (peerplays.sport.Sports method), 101

append () (peerplays.witness.Witnesses method), 111

appendMissingSignatures () (peer-
plays.transactionbuilder. TransactionBuilder
method), 105

appendOps () (peerplays.transactionbuilder. ProposalBuilder
method), 104

appendOps () (peerplays.transactionbuilder. TransactionBuilder
method), 105

appendSigner () (peer-
plays.transactionbuilder. TransactionBuilder
method), 105

appendWif () (peerplays.transactionbuilder. TransactionBuilder
method), 105

approvecommittee () (peer-
plays.peerplays.PeerPlays method), 72
approveproposal () (peer-

plays.peerplays.PeerPlays method), 72

approvewitness () (peerplays.peerplays.PeerPlays
method), 72

args (peerplays.exceptions.AccountExistsException at-
tribute), 56

args (peerplays.exceptions.BetDoesNotExistException
attribute), 56

args (peerplays.exceptions.BettingMarketDoesNotExistException
attribute), 56

args (peerplays.exceptions.BettingMarketGroupDoesNotExistException

attribute), 56

append () (peerplays.bettingmarketgroup. BettingMarketG#d153 (peerplays.exceptions.EventDoesNotExistException

method), 34

attribute), 56

append () (peerplays.blockchainobject.BlockchainObjects2 IS (peerplays.exceptions. EventGroupDoesNotExistException

method), 44

append () (peerplays.event.Events method), 50

append () (peerplays.eventgroup.EventGroups
method), 54

append () (peerplays.genesisbalance.GenesisBalances
method), 60

append () (peerplays.proposal.Proposals method), 93

attribute), 56

args (peerplays.exceptions.GenesisBalanceDoesNotExistsException

attribute), 56

(peerplays.exceptions.InsufficientAuthorityError

attribute), 57

args (peerplays.exceptions.ObjectNotInProposalBuffer
attribute), 57

args (peerplays.exceptions.RPCConnectionRequired at-

args

131

python-peerplays Documentation, Release 0.1

tribute), 57

args (peerplays.exceptions.RuleDoesNotExistException
attribute), 57

args (peerplays.exceptions.SportDoesNotExistException
attribute), 57

args (peerplays.exceptions.WrongMasterPasswordException

attribute), 57
as_base () (peerplays.price.FilledOrder method), 82
as_base () (peerplays.price.Order method), 84
as_base () (peerplays.price.Price method), 87
as_base () (peerplays.price.UpdateCallOrder
method), 89
as_quote () (peerplays.price.FilledOrder method), 82
as_quote () (peerplays.price.Order method), 84
as_quote () (peerplays.price.Price method), 87
as_quote () (peerplays.price.UpdateCallOrder
method), 89
Asset (class in peerplays.asset), 24
asset (peerplays.amount.Amount attribute), 22
awaitTxConfirmation ()
plays.blockchain.Blockchain method), 40

(peer-

B

balance () (peerplays.account.Account method), 17

balances (peerplays.account.Account attribute), 17

Bet (class in peerplays.bet), 26

bet_cancel () (peerplays.peerplays.PeerPlays
method), 72

bet_place ()
method), 73

BetDoesNotExistException, 56

(peerplays.peerplays.PeerPlays

betting_market_create () (peer-
plays.peerplays.PeerPlays method), 73
betting_market_group_create () (peer-
plays.peerplays. PeerPlays method), 73
betting market_group_update () (peer-
plays.peerplays.PeerPlays method), 73
betting_market_resolve () (peer-
plays.peerplays.PeerPlays method), 74
betting_market_rules_create () (peer-
plays.peerplays.PeerPlays method), 74
betting market_rules_update () (peer-
plays.peerplays.PeerPlays method), 74
betting_market_update () (peer-

plays.peerplays.PeerPlays method), 75
BettingMarket (class in peerplays.bettingmarket), 28
BettingMarketDoesNotExistException, 56

BettingMarketGroup (class in peer-
plays.bettingmarketgroup), 32

bettingmarketgroup (peer-
plays.bettingmarket. BettingMarket — attribute),
28

BettingMarketGroupDoesNotExistException,
56

BettingMarketGroups (class in
plays.bettingmarketgroup), 34

bettingmarketgroups (peerplays.event.Event at-
tribute), 48

BettingMarkets (class in peerplays.bettingmarket),

30

bettingmarkets (peer-
plays.bettingmarketgroup.BettingMarketGroup
attribute), 32

blacklist () (peerplays.account.Account method), 17

Block (class in peerplays.block), 36

block_time () (peerplays.blockchain.Blockchain
method), 40

block_timestamp ()
plays.blockchain.Blockchain method), 40

Blockchain (class in peerplays.blockchain), 40

blockchain (peerplays.account.Account attribute), 18

blockchain (peerplays.account.AccountUpdate at-
tribute), 20

blockchain (peerplays.amount.Amount attribute), 22

blockchain (peerplays.asset.Asset attribute), 24

blockchain (peerplays.bet.Bet attribute), 26

blockchain (peerplays.bettingmarket.BettingMarket
attribute), 28

blockchain (peerplays.bettingmarket.BettingMarkets
attribute), 30

blockchain (peerplays.bettingmarketgroup.BettingMarketGroup
attribute), 32

blockchain (peerplays.bettingmarketgroup.BettingMarketGroups
attribute), 34

blockchain (peerplays.block.Block attribute), 36

blockchain (peerplays.block.BlockHeader attribute),
38

blockchain (peerplays.blockchain.Blockchain
tribute), 40

blockchain (peerplays.blockchainobject. BlockchainObject
attribute), 43

blockchain (peerplays.blockchainobject.BlockchainObjects
attribute), 44

blockchain (peerplays.committee. Committee
tribute), 46

blockchain (peerplays.event.Event attribute), 48

blockchain (peerplays.event.Events attribute), 50

blockchain (peerplays.eventgroup. EventGroup
attribute), 52

blockchain (peerplays.eventgroup.EventGroups at-
tribute), 54

blockchain (peerplays.genesisbalance.GenesisBalance
attribute), 58

blockchain (peerplays.genesisbalance.GenesisBalances
attribute), 60

blockchain (peerplays.instance.Blockchainlnstance
attribute), 61

blockchain (peerplays.market.Market attribute), 63

peer-

(peer-

at-

at-

132

Index

python-peerplays Documentation, Release 0.1

blockchain (peerplays.memo.Memo attribute), 68

blockchain (peerplays.message.Message attribute),
69

blockchain (peerplays.price.FilledOrder attribute),
82

blockchain (peerplays.price.Order attribute), 84

blockchain (peerplays.price.Price attribute), 87

blockchain (peerplays.price.PriceFeed attribute), 88

plays.blockchain.Blockchain attribute), 40

blockchain_instance_class

plays.blockchainobject.BlockchainObject

attribute), 43
blockchain_instance_class

(peer-

(peer-

plays.blockchainobject. BlockchainObjects

attribute), 44
blockchain_instance_class

(peer-

blockchain (peerplays.price.UpdateCallOrder plays.committee. Committee attribute), 46

attribute), 90 blockchain_instance_class (peer-
blockchain (peerplays.proposal.Proposal attribute), plays.event. Event attribute), 48

91 blockchain_instance_class (peer-
blockchain (peerplays.proposal.Proposals attribute), plays.event.Events attribute), 50

93 blockchain_instance_class (peer-
blockchain (peerplays.rule.Rule attribute), 95 plays.eventgroup.EventGroup attribute),
blockchain (peerplays.rule.Rules attribute), 97 52
blockchain (peerplays.sport.Sport attribute), 100 blockchain_instance_class (peer-
blockchain (peerplays.sport.Sports attribute), 101 plays.eventgroup. EventGroups attribute),
blockchain (peerplays.transactionbuilder. ProposalBuilder 54

attribute), 104 blockchain_instance_class (peer-
blockchain (peerplays.transactionbuilder. TransactionBuilder plays.genesisbalance.GenesisBalance at-

attribute), 105 tribute), 58
blockchain (peerplays.wallet.Wallet attribute), 107 blockchain_instance_class (peer-
blockchain (peerplays.witness.Witness attribute), 109 plays.genesisbalance.GenesisBalances at-
blockchain (peerplays.witness.Witnesses attribute), tribute), 60

111 blockchain_instance_class (peer-
blockchain_instance_class (peer- plays.market.Market attribute), 63

plays.account.Account attribute), 18 blockchain_instance_class (peer-
blockchain_instance_class (peer- plays.memo.Memo attribute), 68

plays.account.AccountUpdate attribute), blockchain_instance_class (peer-

20 plays.message.Message attribute), 69
blockchain_instance_class (peer- blockchain_instance_class (peer-

plays.amount. Amount attribute), 22 plays.price.FilledOrder attribute), 83
blockchain_instance_class (peer- blockchain_instance_class (peer-

plays.asset.Asset attribute), 24 plays.price.Order attribute), 84
blockchain_instance_class (peerplays.bet.Bet blockchain_instance_class (peer-

attribute), 26 plays.price.Price attribute), 87
blockchain_instance_class (peer- blockchain_instance_class (peer-

plays.bettingmarket. BettingMarket — attribute), plays.price.PriceFeed attribute), 88

28 blockchain_instance_class (peer-
blockchain_instance_class (peer- plays.price.UpdateCallOrder attribute),

plays.bettingmarket. BettingMarkets attribute), 90

30 blockchain_instance_class (peer-
blockchain_instance_class (peer- plays.proposal. Proposal attribute), 91

plays.bettingmarketgroup.BettingMarketGroup blockchain_instance_class (peer-

attribute), 32 plays.proposal. Proposals attribute), 93
blockchain_instance_class (peer- Dblockchain_instance_class (peer-

plays.bettingmarketgroup. BettingMarketGroups plays.rule.Rule attribute), 95

attribute), 34 blockchain_instance_class (peer-
blockchain_instance_class (peer- plays.rule.Rules attribute), 97

plays.block.Block attribute), 36 blockchain_instance_class (peer-
blockchain_instance_class (peer- plays.sport.Sport attribute), 100

plays.block.BlockHeader attribute), 38 blockchain_instance_class (peer-
blockchain_instance_class (peer- plays.sport.Sports attribute), 101
Index 133

python-peerplays Documentation, Release 0.1

blockchain_instance_class (peer-
plays.transactionbuilder. ProposalBuilder
attribute), 104

blockchain_instance_class (peer-

plays.transactionbuilder. TransactionBuilder
attribute), 105

blockchain_instance_class (peer-
plays.wallet. Wallet attribute), 107

blockchain_instance_class (peer-
plays.witness.Witness attribute), 109

blockchain_instance_class (peer-

plays.witness.Witnesses attribute), 111
BlockchainInstance (class in peerplays.instance),

61
BlockchainObject (class in peer-
plays.blockchainobject), 43
BlockchainObjects (class in peer-

plays.blockchainobject), 44

BlockHeader (class in peerplays.block), 38

blocks () (peerplays.blockchain.Blockchain method),
40

broadcast ()
method), 75

(peerplays.peerplays.PeerPlays

broadcast () (peerplays.transactionbuilder. ProposalBuildexche_object ()

method), 104

broadcast () (peerplays.transactionbuilder. TransactionBuddeére _objects ()

method), 105
buy () (peerplays.market.Market method), 63

C

cache () (peerplays.bettingmarket. BettingMarkets

method), 30

cache () (peerplays.bettingmarketgroup.BettingMarketGroups

method), 34

cache () (peerplays.blockchainobject.BlockchainObjects Cache_objects ()

method), 44

cache () (peerplays.event. Events method), 50

cache () (peerplays.eventgroup.EventGroups method),
54

cache () (peerplays.proposal.Proposals method), 93
cache () (peerplays.rule.Rules method), 97
cache () (peerplays.sport.Sports method), 101

(

cache () (peerplays.witness.Witnesses method), 111
cache_object () (peerplays.account.Account class

method), 18

cache_object () (peerplays.asset.Asset class
method), 24

cache_object () (peerplays.bet.Bet class method),
26

cache_object () (peer-
plays.bettingmarket. BettingMarket class
method), 28

cache_object () (peer-

plays.bettingmarketgroup.BettingMarketGroup

class method), 32

cache_object () (peerplays.block.Block class
method), 36

cache_object () (peerplays.block.BlockHeader class
method), 38

cache_object () (peer-

plays.blockchainobject. BlockchainObject
class method), 43

cache_object () (peerplays.committee. Committee
class method), 46

cache_object () (peerplays.event.Event
method), 48

cache_object () (peerplays.eventgroup.EventGroup
class method), 52

class

cache_obiject () (peer-
plays.genesisbalance.GenesisBalance class
method), 58
cache_object () (peerplays.proposal.Proposal class
method), 91
cache_object () (peerplays.rule.Rule class method),
95
cache_object () (peerplays.sport.Sport class
method), 100
(peerplays.witness.Witness class
method), 109
(peer-
plays.bettingmarket. BettingMarkets class
method), 30
cache_objects () (peer-

plays.bettingmarketgroup. BettingMarketGroups
class method), 34
cache_objects () (peer-
plays.blockchainobject. BlockchainObjects
class method), 45
(peerplays.event.Events class
method), 50
cache_objects () (peer-
plays.eventgroup.EventGroups class method),
54
cache_objects () (peerplays.proposal.Proposals

class method), 93

cache_objects () (peerplays.rule.Rules class
method), 97
cache_objects () (peerplays.sport.Sports class

method), 102
cache_objects () (peerplays.witness.Witnesses class
method), 111
cancel () (peerplays.market. Market method), 64
cancel () (peerplays.peerplays.PeerPlays method), 75
cancel_offer () (peerplays.peerplays.PeerPlays
method), 75
chain (peerplays.account.Account attribute), 18
chain (peerplays.account.AccountUpdate attribute), 20
chain (peerplays.amount.Amount attribute), 22

134

Index

python-peerplays Documentation, Release 0.1

chain (peerplays.asset.Asset attribute), 24
chain (peerplays.bet.Bet attribute), 26

chain (peerplays.bettingmarket.BettingMarket at-
tribute), 28
chain (peerplays.bettingmarket.BettingMarkets — at-

tribute), 30

attribute), 32

(
chain (peerplays.bettingmarketgroup.BettingMarketGroupclear (
(
(

chain (peerplays.bettingmarketgroup.BettingMarketGroups lear

attribute), 34

chain (peerplays.block.Block attribute), 36

chain (peerplays.block.BlockHeader attribute), 38

chain (peerplays.blockchain.Blockchain attribute), 41

chain (peerplays.blockchainobject.BlockchainObject
attribute), 43

chain (peerplays.blockchainobject.BlockchainObjects
attribute), 45

chain (peerplays.committee. Committee attribute), 46

chain (peerplays.event.Event attribute), 48

chain (peerplays.event.Events attribute), 50

chain (peerplays.eventgroup.EventGroup attribute), 52

chain (peerplays.eventgroup. EventGroups attribute), 54

chain (peerplays.genesisbalance.GenesisBalance at-
tribute), 58

chain (peerplays.genesisbalance.GenesisBalances at-

tribute), 60

(peerplays.instance.BlockchainInstance at-

tribute), 61

chain (peerplays.market.Market attribute), 64

chain (peerplays.memo.Memo attribute), 68

chain (peerplays.message.Message attribute), 69

chain (peerplays.price.FilledOrder attribute), 83

chain (peerplays.price.Order attribute), 84

chain (peerplays.price.Price attribute), 87

chain (peerplays.price.PriceFeed attribute), 88

chain (peerplays.price.UpdateCallOrder attribute), 90

chain (peerplays.proposal. Proposal attribute), 91

chain (peerplays.proposal.Proposals attribute), 93

chain (peerplays.rule.Rule attribute), 95

chain (peerplays.rule.Rules attribute), 97

chain (peerplays.sport.Sport attribute), 100

chain (peerplays.sport.Sports attribute), 102

chain (peerplays.transactionbuilder. ProposalBuilder
attribute), 104

chain (peerplays.transactionbuilder. TransactionBuilder
attribute), 105

chain (peerplays.wallet.Wallet attribute), 107

chain (peerplays.witness. Witness attribute), 109

chain (peerplays.witness. Witnesses attribute), 111

chain () (in module peerplays.cli.decorators), 15

chainParameters ()
plays.blockchain.Blockchain method), 41

changePassphrase () (peerplays.wallet.Wallet
method), 107

chain

(peer-

(peerplays.genesisbalance.GenesisBalance
method), 58
clear () (peerplays.account.Account method), 18
clear () (peerplays.account.AccountUpdate method),
20

claim()

clear () (peerplays.amount.Amount method), 22
) (peerplays.asset.Asset method), 24

clear () (peerplays.bet.Bet method), 26
) (peerplays.bettingmarket. BettingMarket
method), 28

clear () (peerplays.bettingmarket. BettingMarkets
method), 30

clear () (peerplays.bettingmarketgroup.BettingMarketGroup
method), 32

clear () (peerplays.bettingmarketgroup.BettingMarketGroups
method), 34

clear () (peerplays.block.Block method), 36
clear () (peerplays.block.BlockHeader method), 38
clear () (peerplays.blockchainobject.BlockchainObject

method), 43

clear () (peerplays.blockchainobject.BlockchainObjects
method), 45

clear () (peerplays.committee.Committee method), 46

clear () (peerplays.event.Event method), 48

clear () (peerplays.event.Events method), 50

clear () (peerplays.eventgroup.EventGroup method),
52

clear () (peerplays.eventgroup.EventGroups method),
54

clear () (peerplays.genesisbalance.GenesisBalance
method), 58

clear () (peerplays.genesisbalance.GenesisBalances
method), 60

clear () (peerplays.market.Market method), 64

clear () (peerplays.peerplays.PeerPlays method), 75

clear () (peerplays.price.FilledOrder method), 83

clear () (peerplays.price.Order method), 84

clear () (peerplays.price.Price method), 87

clear () (peerplays.price.PriceFeed method), 88

clear () (peerplays.price.UpdateCallOrder method),
90

clear () (peerplays.proposal.Proposal method), 91

clear () (peerplays.proposal.Proposals method), 93

clear () (peerplays.rule.Rule method), 95

clear () (peerplays.rule.Rules method), 97

clear () (peerplays.sport.Sport method), 100

clear () (peerplays.sport.Sports method), 102

clear () (peerplays.transactionbuilder. TransactionBuilder

method), 105
clear () (peerplays.witness.Witness method), 109
clear () (peerplays.witness.Witnesses method), 111
clear_cache () (peerplays.account.Account class
method), 18
clear_cache () (peerplays.asset.Asset class method),

Index

135

python-peerplays Documentation, Release 0.1

24

clear_cache () (peerplays.bet.Bet class method), 26

clear_cache () (peer-
plays.bettingmarket. BettingMarket class
method), 28

clear_cache () (peer-
plays.bettingmarket. BettingMarkets class
method), 30

clear_cache () (peer-

plays.bettingmarketgroup. BettingMarketGroup
class method), 32

clear_cache () (peer-
plays.bettingmarketgroup.BettingMarketGroups
class method), 34

clear_cache () (peerplays.block.Block class
method), 36

clear_cache () (peerplays.block.BlockHeader class
method), 38

clear_cache () (peer-
plays.blockchainobject.BlockchainObject
class method), 43

clear_cache () (peer-

plays.blockchainobject. BlockchainObjects
class method), 45

clear_cache () (peerplays.committee. Committee
class method), 46

clear_cache () (peerplays.event.Event class
method), 48

clear_cache () (peerplays.event.Events class
method), 50

clear_cache () (peerplays.eventgroup.EventGroup
class method), 52

clear_cache () (peerplays.eventgroup.EventGroups
class method), 54

clear_cache () (peer-
plays.genesisbalance.GenesisBalance class
method), 58

clear_cache () (peerplays.peerplays.PeerPlays
method), 75

clear_cache () (peerplays.proposal.Proposal class
method), 91

clear_cache () (peerplays.proposal Proposals class
method), 93

clear_cache () (peerplays.rule.Rule class method),
95

clear_cache () (peerplays.rule.Rules class method),
97

clear_cache () (peerplays.sport.Sport class method),
100

clear_cache () (peerplays.sport.Sports class
method), 102

clear_cache () (peerplays.witness.Witness class

method), 109
clear_cache () (peerplays.witness.Witnesses class

method), 111

Committee (class in peerplays.committee), 46

config (peerplays.instance.SharedInstance attribute),
62

config () (peerplays.blockchain.Blockchain method),
41

configfile () (in module peerplays.cli.decorators),
15

connect ()
75

constructTx () (peer-
plays.transactionbuilder. TransactionBuilder
method), 105

(peerplays.peerplays.PeerPlays method),

copy () (peerplays.account.Account method), 18

copy () (peerplays.account.AccountUpdate method), 20

copy () (peerplays.amount.Amount method), 22

copy () (peerplays.asset.Asset method), 24

copy () (peerplays.bet.Bet method), 26

copy () (peerplays.bettingmarket. BettingMarket
method), 28

copy () (peerplays.bettingmarket. BettingMarkets
method), 30

copy () (peerplays.bettingmarketgroup.BettingMarketGroup
method), 32

copy () (peerplays.bettingmarketgroup.BettingMarketGroups
method), 34

copy () (peerplays.block.Block method), 36
copy () (peerplays.block.BlockHeader method), 38

(peerplays.rule.Rules method), 97
(peerplays.sport.Sport method), 100
(peerplays.sport.Sports method), 102

CcCopy
CcCopy
Ccopy

copy () (peerplays.blockchainobject.BlockchainObject
method), 43
copy () (peerplays.blockchainobject. BlockchainObjects
method), 45
copy () (peerplays.committee. Committee method), 47
copy () (peerplays.event. Event method), 48
copy () (peerplays.event.Events method), 50
copy () (peerplays.eventgroup.EventGroup method), 52
copy () (peerplays.eventgroup.EventGroups method),
54
copy () (peerplays.genesisbalance.GenesisBalance
method), 58
copy () (peerplays.genesisbalance. GenesisBalances
method), 60
copy () (peerplays.market.Market method), 64
copy () (peerplays.price.FilledOrder method), 83
copy () (peerplays.price.Order method), 84
copy () (peerplays.price.Price method), 87
copy () (peerplays.price.PriceFeed method), 88
copy () (peerplays.price.UpdateCallOrder method), 90
copy () (peerplays.proposal. Proposal method), 91
copy () (peerplays.proposal. Proposals method), 93
copy () (peerplays.rule.Rule method), 95
()
()
()

136

Index

python-peerplays Documentation, Release 0.1

copy () (peerplays.transactionbuilder. TransactionBuilder define_classes ()

method), 105
copy () (peerplays.witness.Witness method), 109

(peer-
plays.account.AccountUpdate method), 20
define_classes () (peerplays.amount.Amount

copy () (peerplays.witness.Witnesses method), 111 method), 22

core_base_market () (peerplays.market.Market define_classes () (peerplays.asset.Asset method),
method), 64 24

core_quote_market () (peerplays.market.Market define_classes () (peerplays.bet.Bet method), 26
method), 64 define_classes() (peer-

count () (peerplays.bettingmarket.BettingMarkets plays.bettingmarket.BettingMarket ~ method),
method), 30 28

count () (peerplays.bettingmarketgroup.BettingMarketGralgpfine_classes () (peer-
method), 34 plays.bettingmarket. BettingMarkets — method),

count () (peerplays.blockchainobject.BlockchainObjects 30
method), 45 define_classes () (peer-

count () (peerplays.event. Events method), 50
count () (peerplays.eventgroup.EventGroups method),

54
count () (peerplays.genesisbalance.GenesisBalances
method), 60
count () (peerplays.proposal.Proposals method), 93
count () (peerplays.rule.Rules method), 97
count () (peerplays.sport.Sports method), 102

count () (peerplays.witness.Witnesses method), 112
create () (peerplays.wallet.Wallet method), 107
create_account () (peerplays.peerplays.PeerPlays
method), 75
create_account () (peerplays.peerplays2.PeerPlays
method), 82
create_bid{()
method), 76
create_offer ()
method), 76
create_son () (peerplays.son.Son method), 99
created () (peerplays.wallet.Wallet method), 107

(peerplays.peerplays.PeerPlays

(peerplays.peerplays.PeerPlays

custom_account_authority_create () (peer-
plays.peerplays.PeerPlays method), 76
custom_account_authority_delete () (peer-
plays.peerplays.PeerPlays method), 76
custom_account_authority_update () (peer-
plays.peerplays. PeerPlays method), 76
custom_permission_create() (peer-
plays.peerplays.PeerPlays method), 76
custom_permission_delete () (peer-
plays.peerplays.PeerPlays method), 76
custom_permission_update () (peer-

plays.peerplays. PeerPlays method), 76
customchain () (in module peerplays.cli.decorators),

16

D

decrypt () (peerplays.memo.Memo method), 68
define_classes () (peerplays.account.Account
method), 18

plays.bettingmarketgroup.BettingMarketGroup
method), 32

define_classes () (peer-
plays.bettingmarketgroup. BettingMarketGroups

method), 34

define_classes () (peerplays.block.Block method),
36

define_classes () (peerplays.block.BlockHeader
method), 38

define_classes () (peer-
plays.blockchain.Blockchain method), 41

define_classes () (peer-

plays.blockchainobject. BlockchainObject
method), 43

define_classes() (peer-
plays.blockchainobject. BlockchainObjects
method), 45

define_classes () (peerplays.committee. Committee
method), 47

define_classes () (peerplays.event.Event method),
49

define_classes ()
method), 51

define_classes () (peer-
plays.eventgroup. EventGroup method), 52

(peerplays.event. Events

define_classes () (peer-
plays.eventgroup. EventGroups method),
54

define_classes () (peer-

plays.genesisbalance.GenesisBalance method),
58

define_classes () (peer-
plays.genesisbalance.GenesisBalances
method), 60

define_classes () (peer-
plays.instance.Blockchainlnstance ~ method),
61

define_classes () (peerplays.market.Market
method), 64

define_classes () (peerplays.memo.Memo

Index

137

python-peerplays Documentation, Release 0.1

method), 68

define_classes|() (peerplays.message.Message
method), 69

define_classes () (peerplays.peerplays.PeerPlays
method), 76

define_classes () (peerplays.price.FilledOrder
method), 83

define_classes () (peerplays.price.Order method),
84

define_classes () (peerplays.price.Price method),
87

define_classes () (peerplays.price.PriceFeed
method), 88

define_classes () (peer-
plays.price.UpdateCallOrder method), 90

define_classes () (peerplays.proposal. Proposal
method), 91

define_classes ()
method), 94

define_classes () (peerplays.rule.Rule method), 95

define_classes () (peerplays.rule.Rules method),
97

define_classes () (peerplays.sport.Sport method),
100

define_classes () (peerplays.sport.Sports method),
102

define_classes|()
plays.transactionbuilder. ProposalBuilder
method), 104

define_classes () (peer-
plays.transactionbuilder. TransactionBuilder
method), 105

define_classes|()
method), 107

define_classes|()
method), 109

define_classes ()
method), 112

delete_sidechain_address ()
plays.son.Son method), 99

deleteproposal () (peerplays.peerplays.PeerPlays
method), 76

dict2dList () (in module peerplays.utils), 107

disallow () (peerplays.peerplays.PeerPlays method),
76

(peerplays.proposal. Proposals

(peer-

(peerplays.wallet. Wallet
(peerplays.witness. Witness

(peerplays.witness. Witnesses

(peer-

disapprovecommittee () (peer-
plays.peerplays.PeerPlays method), 77

disapproveproposal () (peer-
plays.peerplays. PeerPlays method), 77

disapprovewitness () (peer-

plays.peerplays. PeerPlays method), 77
dList2Dict () (in module peerplays.utils), 107

E

encrypt () (peerplays.memo.Memo method), 68
ensure_full () (peerplays.account.Account method),
18
ensure_full () (peerplays.asset.Asset method), 24
Event (class in peerplays.event), 48
event (peerplays.bettingmarketgroup.BettingMarketGroup
attribute), 32
event_create ()
method), 77

(peerplays.peerplays.PeerPlays

event_group_create() (peer-
plays.peerplays.PeerPlays method), 77
event_group_update () (peer-

plays.peerplays.PeerPlays method), 78
event_update () (peerplays.peerplays.PeerPlays
method), 78
event_update_status ()
plays.peerplays.PeerPlays method), 78
EventDoesNotExistException, 56
EventGroup (class in peerplays.eventgroup), 52
eventgroup (peerplays.event. Event attribute), 49
eventgroup_delete () (peer-
plays.peerplays.PeerPlays method), 78
EventGroupDoesNotExistException, 56
EventGroups (class in peerplays.eventgroup), 54
eventgroups (peerplays.sport.Sport attribute), 100
Events (class in peerplays.event), 50
events (peerplays.eventgroup.EventGroup attribute),
52
expiration (peerplays.proposal Proposal attribute),
91
extend () (peerplays.bettingmarket. BettingMarkets
method), 31

(peer-

extend () (peerplays.bettingmarketgroup.BettingMarketGroups

method), 34

extend () (peerplays.blockchainobject.BlockchainObjects
method), 45

extend () (peerplays.event.Events method), 51

extend() (peerplays.eventgroup. EventGroups
method), 54

extend () (peerplays.genesisbalance.GenesisBalances
method), 60

extend () (peerplays.proposal.Proposals method), 94

extend () (peerplays.rule.Rules method), 97
extend () (peerplays.sport.Sports method), 102
extend () (peerplays.witness.Witnesses method), 112

F

FilledOrder (class in peerplays.price), 82

finalizeOp () (peerplays.peerplays.PeerPlays
method), 78

flags (peerplays.asset.Asset attribute), 24

for_sale (peerplays.price.Order attribute), 84

fromkeys () (peerplays.account.Account method), 18

138

Index

python-peerplays Documentation, Release 0.1

fromkeys () (peerplays.account.AccountUpdate
method), 20

fromkeys () (peerplays.amount.Amount method), 23

fromkeys () (peerplays.asset.Asset method), 24

fromkeys () (peerplays.bet.Bet method), 26

fromkeys () (peerplays.bettingmarket.BettingMarket

method), 28

get () (peerplays.blockchainobject. BlockchainObject
method), 43

get () (peerplays.committee. Committee method), 47

get () (peerplays.event.Event method), 49

get () (peerplays.eventgroup.EventGroup method), 52

get () (peerplays.genesisbalance.GenesisBalance

method), 58

fromkeys () (peerplays.bettingmarketgroup.BettingMarket&rolip (peerplays.market. Market method), 64

method), 32
fromkeys () (peerplays.block.Block method), 36

fromkeys () (peerplays.block.BlockHeader method),
38

fromkeys () (peerplays.blockchainobject. BlockchainObjegtt
method), 43

fromkeys () (peerplays.committee. Committee
method), 47

fromkeys () (peerplays.event.Event method), 49

fromkeys () (peerplays.eventgroup. EventGroup
method), 52

fromkeys () (peerplays.genesisbalance.GenesisBalance
method), 58

fromkeys () (peerplays.market.Market method), 64

fromkeys () (peerplays.price.FilledOrder method), 83

fromkeys () (peerplays.price.Order method), 84

fromkeys () (peerplays.price.Price method), 87

fromkeys () (peerplays.price.PriceFeed method), 88

fromkeys () (peerplays.price.UpdateCallOrder
method), 90

fromkeys () (peerplays.proposal.Proposal method),
91

fromkeys () (peerplays.rule.Rule method), 95
fromkeys () (peerplays.sport.Sport method), 100
(

get () (peerplays.price.FilledOrder method), 83

get () (peerplays.price.Order method), 84
get () (peerplays.price.Price method), 87
get () (peerplays.price.PriceFeed method), 89

()
()
0)
() (peerplays.price.UpdateCallOrder method), 90
()
0)
()
0

get () (peerplays.proposal.Proposal method), 91

get () (peerplays.rule.Rule method), 95

get () (peerplays.sport.Sport method), 100

get () (peerplays.transactionbuilder. TransactionBuilder

method), 105
get () (peerplays.witness.Witness method), 110
get_all_accounts()
plays.blockchain.Blockchain method), 41
get_block_interval ()
plays.blockchain.Blockchain method), 41
get_block_params () (peer-
plays.transactionbuilder. TransactionBuilder
method), 106

(peer-
(peer-

get_chain_properties|() (peer-
plays.blockchain.Blockchain method), 41
get_current_block () (peer-

plays.blockchain.Blockchain method), 41
get_current_block_num/()
plays.blockchain.Blockchain method), 41

(peer-

fromkeys () (peerplays.transactionbuilder. TransactionBugdér default_config_store () (in module peer-

method), 105
fromkeys () (peerplays.witness.Witness method), 109

G

GenesisBalance (class in peerplays.genesisbalance),

58
GenesisBalanceDoesNotExistsException,
56
GenesisBalances (class in peer-

plays.genesisbalance), 60

plays.storage), 103
get_default_key_store ()
plays.storage), 103
get_dynamic_type () (peer-
plays.bettingmarketgroup.BettingMarketGroup
method), 32

(in module peer-

get_instance_class () (peer-
plays.account.Account method), 18
get_instance_class () (peer-

plays.account.AccountUpdate method), 20

get () (peerplays.account.Account method), 18 get_instance_class () (peer-
get () (peerplays.account.AccountUpdate method), 20 plays.amount. Amount method), 23
get () (peerplays.amount.Amount method), 23 get_instance_class() (peerplays.asset.Asset
get () (peerplays.asset.Asset method), 24 method), 24
get () (peerplays.bet.Bet method), 27 get_instance_class () (peerplays.bet.Bet
get () (peerplays.bettingmarket.BettingMarket method), method), 27
29 get_instance_class() (peer-
get () (peerplays.bettingmarketgroup.BettingMarketGroup plays.bettingmarket.BettingMarket ~ method),
method), 32 29
get () (peerplays.block.Block method), 36 get_instance_class() (peer-
get () (peerplays.block.BlockHeader method), 38 plays.bettingmarket. BettingMarkets method),
Index 139

python-peerplays Documentation, Release 0.1

31

get_instance_class() (peer-
plays.bettingmarketgroup.BettingMarketGroup
method), 32

get_instance_class () (peer-
plays.bettingmarketgroup.BettingMarketGroups

method), 34

get_instance_class () (peerplays.block.Block
method), 36

get_instance_class() (peer-

plays.block.BlockHeader method), 38

get_instance_class () (peer-
plays.blockchain.Blockchain method), 41

get_instance_class() (peer-
plays.blockchainobject.BlockchainObject
method), 43

get_instance_class () (peer-

plays.blockchainobject. BlockchainObjects

method), 45
get_instance_class()

plays.committee. Committee method), 47
get_instance_class () (peerplays.event.Event

method), 49
get_instance_class()

method), 51
get_instance_class() (peer-

plays.eventgroup. EventGroup method), 52

(peer-

(peerplays.event.Events

get_instance_class () (peer-
plays.eventgroup. EventGroups method),
54

get_instance_class () (peer-

plays.genesisbalance.GenesisBalance method),
58

get_instance_class() (peer-
plays.genesisbalance.GenesisBalances
method), 60

get_instance_class () (peer-
plays.instance.Blockchainlnstance ~ method),

61
get_instance_class()

method), 64
get_instance_class()

method), 68

(peerplays.market.Market

(peerplays.memo.Memo

get_instance_class () (peer-
plays.message.Message method), 69
get_instance_class () (peer-

plays.price.FilledOrder method), 83
get_instance_class () (peerplays.price.Order

method), 84

get_instance_class () (peerplays.price.Price
method), 87

get_instance_class () (peer-

plays.price.PriceFeed method), 89
get_instance_class|()

(peer-

plays.price.UpdateCallOrder method), 90

get_instance_class() (peer-
plays.proposal.Proposal method), 91

get_instance_class () (peer-
plays.proposal. Proposals method), 94

get_instance_class () (peerplays.rule.Rule
method), 95

get_instance_class () (peerplays.rule.Rules
method), 97

get_instance_class () (peerplays.sport.Sport
method), 100

get_instance_class () (peerplays.sport.Sports
method), 102

get_instance_class() (peer-

plays.transactionbuilder. ProposalBuilder
method), 104
get_instance_class () (peer-
plays.transactionbuilder. TransactionBuilder
method), 106
get_instance_class()
method), 108
get_instance_class () (peerplays.witness.Witness
method), 110
get_instance_class|()
plays.witness.Witnesses method), 112
get_limit_orders() (peerplays.market.Market
method), 64
get_network ()
method), 41
get_parent ()
plays.transactionbuilder. ProposalBuilder
method), 104
get_parent () (peer-
plays.transactionbuilder. TransactionBuilder
method), 106

(peerplays.wallet. Wallet

(peer-

(peerplays.blockchain.Blockchain

(peer-

get_raw () (peerplays.transactionbuilder. ProposalBuilder

method), 104
get_string () (peerplays.market.Market method), 64
get_terminal () (in module peerplays.cli.ui), 16

getAccountFromPrivateKey () (peer-
plays.wallet. Wallet method), 107

getAccountFromPublicKey () (peer-
plays.wallet. Wallet method), 107

getAccounts () (peerplays.wallet. Wallet method),
107

getAccountsFromPublicKey () (peer-
plays.wallet.Wallet method), 108

getActiveKeyForAccount () (peer-

plays.wallet. Wallet method), 108

getAllAccounts () (peerplays.wallet. Wallet
method), 108

getfromcache () (peerplays.account.Account
method), 18

getfromcache () (peerplays.asset.Asset method), 24

140

Index

python-peerplays Documentation, Release 0.1

getfromcache () (peerplays.bet.Bet method), 27

getfromcache () (peer-
plays.bettingmarket. BettingMarket ~ method),
29

get fromcache () (peer-
plays.bettingmarket. BettingMarkets — method),
31

getfromcache () (peer-

plays.bettingmarketgroup. BettingMarketGroup
method), 32

getfromcache () (peer-
plays.bettingmarketgroup. BettingMarketGroups
method), 34

getfromcache () (peerplays.block.Block method), 36

getfromcache () (peerplays.block.BlockHeader
method), 38

getfromcache () (peer-
plays.blockchainobject. BlockchainObject
method), 43

getfromcache () (peer-

plays.blockchainobject.BlockchainObjects
method), 45
getfromcache ()
method), 47
getfromcache () (peerplays.event.Event method), 49
getfromcache () (peerplays.event.Events method),
51
getfromcache ()
method), 52
getfromcache () (peerplays.eventgroup.EventGroups
method), 54
get fromcache () (peer-
plays.genesisbalance.GenesisBalance method),

(peerplays.committee. Committee

(peerplays.eventgroup. EventGroup

58
getfromcache () (peerplays.proposal. Proposal
method), 92
getfromcache () (peerplays.proposal. Proposals
method), 94
getfromcache () (peerplays.rule.Rule method), 95
getfromcache () (peerplays.rule.Rules method), 97
getfromcache () (peerplays.sport.Sport method), 100
getfromcache () (peerplays.sport.Sports method),
102

getfromcache () (peerplays.witness.Witness
method), 110

getfromcache ()
method), 112

getKeyType () (peerplays.wallet.Wallet method), 108

(peerplays.witness. Witnesses

getMemoKeyForAccount () (peer-
plays.wallet. Wallet method), 108

getOwnerKeyForAccount () (peer-
plays.wallet. Wallet method), 108

getPrivateKeyForPublicKey () (peer-

plays.wallet. Wallet method), 108

getPublicKeys () (peerplays.wallet.Wallet method),
108
grading (peerplays.rule.Rule attribute), 95

Fl

heartbeat () (peerplays.son.Son method), 99
history () (peerplays.account.Account method), 18

identifier (peerplays.account.Account attribute), 18

identifier (peerplays.asset.Asset attribute), 24

identifier (peerplays.bet.Bet attribute), 27

identifier (peerplays.bettingmarket.BettingMarket
attribute), 29

identifier (peerplays.bettingmarket.BettingMarkets
attribute), 31

identifier (peerplays.bettingmarketgroup.BettingMarketGroup

attribute), 32

identifier (peerplays.bettingmarketgroup.BettingMarketGroups

attribute), 35
identifier (peerplays.block.Block attribute), 36

identifier (peerplays.block.BlockHeader attribute),
38

identifier (peerplays.blockchainobject.BlockchainObject

attribute), 43

identifier (peerplays.blockchainobject.BlockchainObjects

attribute), 45

identifier (peerplays.committee.Committee
tribute), 47

identifier (peerplays.event.Event attribute), 49

identifier (peerplays.event.Events attribute), 51

identifier (peerplays.eventgroup. EventGroup
attribute), 52

identifier (peerplays.eventgroup.EventGroups at-
tribute), 54

identifier (peerplays.genesisbalance.GenesisBalance
attribute), 58

identifier (peerplays.proposal.Proposal attribute),
92

identifier (peerplays.proposal.Proposals attribute),
94

identifier (peerplays.rule.Rule attribute), 95

identifier (peerplays.rule.Rules attribute), 97

identifier (peerplays.sport.Sport attribute), 100

identifier (peerplays.sport.Sports attribute), 102

identifier (peerplays.witness.Witness attribute), 110

identifier (peerplays.witness.Witnesses attribute),
112

import_key ()
method), 82

incached () (peerplays.account.Account method), 18

incached () (peerplays.asset.Asset method), 24

incached () (peerplays.bet.Bet method), 27

at-

(peerplays.peerplays2.PeerPlays

Index

141

python-peerplays Documentation, Release 0.1

incached () (peerplays.bettingmarket.BettingMarket
method), 29

incached () (peerplays.bettingmarket.BettingMarkets
method), 31

inject () (peerplays.account.Account class method),
18

inject () (peerplays.account.AccountUpdate
method), 21

class

incached () (peerplays.bettingmarketgroup.BettingMarketGieupt () (peerplays.amount.Amount class method), 23

method), 33

incached () (peerplays.bettingmarketgroup.BettingMarketGriaupss

method), 35
incached () (peerplays.block.Block method), 36
incached () (peerplays.block.BlockHeader method),
38

incached () (peerplays.blockchainobject. BlockchainObjeirthject () (peerplays.bettingmarketgroup.BettingMarketGroup

method), 43

incached () (peerplays.blockchainobject. BlockchainObjertsject () (peerplays.bettingmarketgroup.BettingMarketGroups

method), 45
incached ()
method), 47
incached () (peerplays.event.Event method), 49
incached () (peerplays.event.Events method), 51
incached() (peerplays.eventgroup. EventGroup
method), 53
incached() (peerplays.eventgroup. EventGroups
method), 54
incached () (peerplays.genesisbalance.GenesisBalance
method), 58
incached () (peerplays.proposal.Proposal method),
92
incached ()
94
incached
incached
incached

(peerplays.committee. Committee

(peerplays.proposal. Proposals method),

(peerplays.rule.Rule method), 96
(peerplays.rule.Rules method), 97
(peerplays.sport.Sport method), 100
(peerplays.sport.Sports method), 102
(peerplays.witness. Witness method), 110
(peerplays.witness.Witnesses method),

incached
incached
112

index ()

()
()
()
incached()
()
()

(peerplays.bettingmarket. BettingMarkets
method), 31

inject () (peerplays.asset.Asset class method), 25

() (peerplays.bet.Bet class method), 27

() (peerplays.bettingmarket. BettingMarket

class method), 29

inject () (peerplays.bettingmarket. BettingMarkets
class method), 31

inject

class method), 33

class method), 35
inject () (peerplays.block.Block class method), 37

inject () (peerplays.block.BlockHeader class
method), 38

inject () (peerplays.blockchain.Blockchain class
method), 41

inject () (peerplays.blockchainobject.BlockchainObject
class method), 43

inject () (peerplays.blockchainobject.BlockchainObjects
class method), 45

inject () (peerplays.committee. Committee
method), 47

inject () (peerplays.event.Event class method), 49

inject () (peerplays.event.Events class method), 51

inject () (peerplays.eventgroup.EventGroup class
method), 53

inject () (peerplays.eventgroup.EventGroups class
method), 55

inject () (peerplays.genesisbalance.GenesisBalance
class method), 58

inject () (peerplays.genesisbalance.GenesisBalances
class method), 60

inject () (peerplays.instance.BlockchainInstance
class method), 61

class

index () (peerplays.bettingmarketgroup.BettingMarketGraupgect () (peerplays.market.Market class method), 65

method), 35

index () (peerplays.blockchainobject. BlockchainObjects
method), 45

index () (peerplays.event.Events method), 51

index () (peerplays.eventgroup.EventGroups method),

55
index () (peerplays.genesisbalance.GenesisBalances
method), 60
index () (peerplays.proposal.Proposals method), 94
index () (peerplays.rule.Rules method), 97
index () (peerplays.sport.Sports method), 102
index () (peerplays.witness.Witnesses method), 112

info () (peerplays.blockchain.Blockchain method), 41
info () (peerplays.peerplays.PeerPlays method), 79
info () (peerplays.peerplays2.PeerPlays method), 82

inject () (peerplays.memo.Memo class method), 68

inject () (peerplays.message.Message class method),
69

inject () (peerplays.price.FilledOrder class method),
83

inject () (peerplays.price.Order class method), 85

(
inject () (peerplays.price.Price class method), 87
inject () (peerplays.price.PriceFeed class method), 89
inject () (peerplays.price.UpdateCallOrder class
method), 90
inject () (peerplays.proposal.Proposal class method),
92
inject () (peerplays.proposal. Proposals class

method), 94
inject () (peerplays.rule.Rule class method), 96

142

Index

python-peerplays Documentation, Release 0.1

inject () (peerplays.rule.Rules class method), 98
inject () (peerplays.sport.Sport class method), 100
inject () (peerplays.sport.Sports class method), 102
inject () (peerplays.transactionbuilder. ProposalBuilder

class method), 104

inject () (peerplays.transactionbuilder. TransactionBuildérs_1ocked ()

class method), 106

inject () (peerplays.wallet.Wallet class method), 108

inject () (peerplays.witness.Witness class method),
110

inject () (peerplays.witness.Witnesses class method),
112

insert () (peerplays.bettingmarket. BettingMarkets
method), 31

insert () (peerplays.bettingmarketgroup.BettingMarketGidugms

method), 35

insert () (peerplays.blockchainobject.BlockchainObjects
method), 45

insert () (peerplays.event.Events method), 51

insert () (peerplays.eventgroup.EventGroups
method), 55

insert () (peerplays.genesisbalance.GenesisBalances
method), 60

insert () (peerplays.proposal.Proposals method), 94

insert () (peerplays.rule.Rules method), 98

insert () (peerplays.sport.Sports method), 102

insert () (peerplays.witness.Witnesses method), 112

instance (peerplays.instance.SharedInstance at-
tribute), 62

InsufficientAuthorityError, 57

invert () (peerplays.price.FilledOrder method), 83

invert () (peerplays.price.Order method), 85

invert () (peerplays.price.Price method), 87

invert () (peerplays.price.UpdateCallOrder method),
90

is_active (peerplays.witness.Witness attribute), 110

is_bitasset (peerplays.asset.Asset attribute), 25

is_connected () (peerplays.peerplays.PeerPlays
method), 79

is_dynamic () (peer-
plays.bettingmarketgroup.BettingMarketGroup
method), 33

is_dynamic_type () (peer-
plays.bettingmarketgroup.BettingMarketGroup
method), 33

is_empty () (peerplays.transactionbuilder. ProposalBuildért ems

method), 104

is_empty () (peerplays.transactionbuilder. TransactionBuildems

method), 106

is_encrypted () (peerplays.wallet.Wallet method),
108

is_fully_loaded (peerplays.account.Account at-
tribute), 18

is_fully_loaded (peerplays.asset.Asset attribute),

25

is_in_review (peerplays.proposal.Proposal at-
tribute), 92

is_irreversible_mode () (peer-

plays.blockchain.Blockchain method), 41
(peerplays.peerplays2.PeerPlays
method), 82
is_locked () (peerplays.son.Son method), 99
is_1ltm (peerplays.account.Account attribute), 19
items () (peerplays.account.Account method), 19
items () (peerplays.account.AccountUpdate method),
21
(peerplays.amount. Amount method), 23
(peerplays.asset.Asset method), 25
(peerplays.bet.Bet method), 27

items
items

—_~ e~~~
—_— — — ~—

items (peerplays.bettingmarket. BettingMarket
method), 29

items () (peerplays.bettingmarket. BettingMarkets
method), 31

items () (peerplays.bettingmarketgroup.BettingMarketGroup

method), 33

items () (peerplays.bettingmarketgroup.BettingMarketGroups

method), 35
items () (peerplays.block.Block method), 37
items () (peerplays.block.BlockHeader method), 38
items () (peerplays.blockchainobject.BlockchainObject

method), 43

items () (peerplays.blockchainobject.BlockchainObjects
method), 45

items () (peerplays.committee. Committee method), 47

items () (peerplays.event.Event method), 49

items () (peerplays.event.Events method), 51

items () (peerplays.eventgroup.EventGroup method),
53

items () (peerplays.eventgroup.EventGroups method),
55

items () (peerplays.genesisbalance.GenesisBalance

method), 59

items () (peerplays.market.Market method), 65
items () (peerplays.price.FilledOrder method), 83
items () (peerplays.price.Order method), 85

items () (peerplays.price.Price method), 87

items () (peerplays.price.PriceFeed method), 89
items () (peerplays.price.UpdateCallOrder method),

90
(peerplays.proposal. Proposal method), 92
(peerplays.proposal. Proposals method), 94
(peerplays.rule.Rule method), 96

items

0
0
0
0
0
0
0

items () (peerplays.rule.Rules method), 98

items () (peerplays.sport.Sport method), 100

items () (peerplays.sport.Sports method), 102

items () (peerplays.transactionbuilder. TransactionBuilder

method), 106
items () (peerplays.witness.Witness method), 110

Index

143

python-peerplays Documentation, Release 0.1

items () (peerplays.witness.Witnesses method), 112

J

json () (peerplays.amount.Amount method), 23

json () (peerplays.price.FilledOrder method), 83

json () (peerplays.price.Order method), 85

json () (peerplays.price.Price method), 87

json () (peerplays.price.UpdateCallOrder method), 90
json () (peerplays.transactionbuilder. ProposalBuilder

method), 104
json () (peerplays.transactionbuilder. TransactionBuilder
method), 106

K

keys () (peerplays.account.Account method), 19

keys () (peerplays.account.AccountUpdate method), 21
keys () (peerplays.amount.Amount method), 23

keys () (peerplays.asset.Asset method), 25

keys () (peerplays.bet.Bet method), 27

keys () (peerplays.bettingmarket. BettingMarket

method), 29

keys () (peerplays.bettingmarketgroup.BettingMarketGroupew_wallet ()

method), 33
keys () (peerplays.block.Block method), 37
keys () (peerplays.block.BlockHeader method), 38

keys () (peerplays.blockchainobject.BlockchainObject
method), 43

keys () (peerplays.committee. Committee method), 47

keys () (peerplays.event.Event method), 49

keys () (peerplays.eventgroup.EventGroup method), 53

keys () (peerplays.genesisbalance.GenesisBalance
method), 59

keys () (peerplays.market.Market method), 65

keys () (peerplays.price.FilledOrder method), 83

keys () (peerplays.price.Order method), 85

keys () (peerplays.price.Price method), 87

keys () (peerplays.price.PriceFeed method), 89

keys () (peerplays.price.UpdateCallOrder method), 90

keys () (peerplays.proposal. Proposal method), 92

keys () (peerplays.rule.Rule method), 96

keys () (peerplays.sport.Sport method), 100

keys () (peerplays.transactionbuilder. TransactionBuilder
method), 106

keys () (peerplays.witness.Witness method), 110

list_operations () (peer-
plays.transactionbuilder. ProposalBuilder
method), 104

list_operations () (peer-

plays.transactionbuilder. TransactionBuilder
method), 106
listen () (peerplays.notify.Notify method), 70
lock () (peerplays.wallet.Wallet method), 108

locked () (peerplays.wallet.Wallet method), 108

M

map2dict () (in module peerplays.utils), 107

maplist2dict () (in module peerplays.cli.ui), 16

Market (class in peerplays.market), 62

market (peerplays.price.FilledOrder attribute), 83

market (peerplays.price.Order attribute), 85

market (peerplays.price.Price attribute), 87

market (peerplays.price.UpdateCallOrder attribute),
90

Memo (class in peerplays.memo), 67

Message (class in peerplays.message), 69

MESSAGE_SPLIT (peerplays.message.Message
tribute), 69

art-

N

name (peerplays.account.Account attribute), 19
new_proposal () (peerplays.peerplays.PeerPlays
method), 79
new_tx () (peerplays.peerplays.PeerPlays method), 79
(peerplays.peerplays.PeerPlays
method), 79
newWallet ()
method), 79
newWallet () (peerplays.wallet.Wallet method), 108
nft_approve () (peerplays.peerplays.PeerPlays
method), 79

(peerplays.peerplays.PeerPlays

nft_metadata_create() (peer-
plays.peerplays.PeerPlays method), 79
nft_metadata_update () (peer-

plays.peerplays.PeerPlays method), 79
nft_mint () (peerplays.peerplays.PeerPlays method),
79

nft_safe_transfer_from() (peer-
plays.peerplays.PeerPlays method), 80
nft_set_approval_for_all () (peer-

plays.peerplays.PeerPlays method), 80
nolist () (peerplays.account.Account method), 19
Notify (class in peerplays.notify), 70

O

objectid_valid()
static method), 19

(peerplays.account.Account

objectid_valid() (peerplays.asset.Asset static
method), 25

objectid_valid() (peerplays.bet.Bet static
method), 27

objectid_valid() (peer-
plays.bettingmarket. BettingMarket static
method), 29

objectid_valid() (peer-

plays.bettingmarketgroup.BettingMarketGroup
static method), 33

144

Index

python-peerplays Documentation, Release 0.1

objectid_valid() static
method), 37
objectid_valid () (peerplays.block.BlockHeader
static method), 38
objectid_valid()
plays.blockchainobject. BlockchainObject
static method), 43
objectid_valid() (peerplays.committee. Committee
static method), 47

(peerplays.block.Block

(peer-

objectid_valid() (peerplays.event.Event static
method), 49
objectid_valid() (peer-

plays.eventgroup. EventGroup static method),
53

objectid_valid()
plays.genesisbalance.GenesisBalance
method), 59

objectid_valid() (peerplays.proposal.Proposal
static method), 92

(peer-

static

objectid_valid() (peerplays.rule.Rule static
method), 96
objectid_valid() (peerplays.sport.Sport static

method), 100
objectid_valid() (peerplays.witness.Witness static
method), 110
ObjectNotInProposalBuffer, 57
offline () (in module peerplays.cli.decorators), 16
offlineChain () (in module peer-
plays.cli.decorators), 16
online () (in module peerplays.cli.decorators), 16
onlineChain () (in module peerplays.cli.decorators),
16
ops () (peerplays.blockchain.Blockchain method), 41
Order (class in peerplays.price), 84
orderbook () (peerplays.market. Market method), 65

P

participation_rate (peer-
plays.blockchain.Blockchain attribute), 42

PeerPlays (class in peerplays.peerplays), 71

PeerPlays (class in peerplays.peerplays2), 81

peerplays (module), 113

peerplays (peerplays.account.Account attribute), 19

peerplays (peerplays.account.AccountUpdate at-
tribute), 21

peerplays (peerplays.amount. Amount attribute), 23

peerplays (peerplays.asset.Asset attribute), 25

peerplays (peerplays.bet.Bet attribute), 277

peerplays (peerplays.bettingmarket.BettingMarket at-
tribute), 29

peerplays (peerplays.bettingmarket.BettingMarkets
attribute), 31

peerplays (peerplays.bettingmarketgroup. BettingMarketGroups
attribute), 35

peerplays (peerplays.block.Block attribute), 37

peerplays (peerplays.block.BlockHeader attribute),
39

peerplays (peerplays.blockchain.Blockchain
tribute), 42

peerplays (peerplays.blockchainobject. BlockchainObject
attribute), 43

peerplays (peerplays.blockchainobject. BlockchainObjects
attribute), 45

peerplays (peerplays.committee. Committee attribute),
47

peerplays (peerplays.event.Event attribute), 49

peerplays (peerplays.event.Events attribute), 51

at-

peerplays (peerplays.eventgroup.EventGroup at-
tribute), 53
peerplays (peerplays.eventgroup.EventGroups at-

tribute), 55

peerplays (peerplays.genesisbalance.GenesisBalance
attribute), 59

peerplays (peerplays.genesisbalance.GenesisBalances
attribute), 60

peerplays (peerplays.instance.Blockchainlnstance at-
tribute), 61

peerplays (peerplays.market.Market attribute), 65

peerplays (peerplays.memo.Memo attribute), 68

peerplays (peerplays.message.Message attribute), 69

peerplays (peerplays.price.FilledOrder attribute), 83

peerplays (peerplays.price.Order attribute), 85

peerplays (peerplays.price.Price attribute), 87

peerplays (peerplays.price.PriceFeed attribute), 89

peerplays (peerplays.price.UpdateCallOrder at-
tribute), 90

peerplays (peerplays.proposal. Proposal attribute), 92

peerplays (peerplays.proposal.Proposals attribute),
94

peerplays (peerplays.rule.Rule attribute), 96

peerplays (peerplays.rule.Rules attribute), 98

peerplays (peerplays.sport.Sport attribute), 100

peerplays (peerplays.sport.Sports attribute), 102

peerplays (peerplays.transactionbuilder. ProposalBuilder
attribute), 104

peerplays (peerplays.transactionbuilder. TransactionBuilder
attribute), 106

peerplays (peerplays.wallet. Wallet attribute), 108

peerplays (peerplays.witness.Witness attribute), 110

peerplays (peerplays.witness.Witnesses attribute),
112

peerplays.account (module), 17

peerplays.amount (module), 21

peerplays.asset (module), 24

peerplays (peerplays.bettingmarketgroup.BettingMarketGeaipp1ay s . bet (module), 26

attribute), 33

peerplays.bettingmarket (module), 28

Index

145

python-peerplays Documentation, Release 0.1

peerplays
peerplays
peerplays
peerplays
peerplays

peerplays.
.cli
.cli.
.cli.
.cli.

peerplays
peerplays
peerplays
peerplays

peerplays.
.cli.
.cli.
.cli.
.cli.

peerplays
peerplays
peerplays
peerplays

peerplays.
.cli.
.cli.
.cli.
.cli.
.committee (module), 46

.event (module), 48

.eventgroup (module), 52
.exceptions (module), 56
.genesisbalance (module), 58
.instance (module), 61

.market (module), 62

.memo (module), 67

.message (module), 69

.notify (module), 70

.peerplays (module), 71
.peerplays?2 (module), 81

.price (module), 82

.proposal (module), 91

.rule (module), 95

. son (module), 98

.sport (module), 99

.storage (module), 103
.transactionbuilder (module), 103
.utils (module), 107

.wallet (module), 107

.witness (module), 109

peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays
peerplays

.bettingmarketgroup (module), 32
.block (module), 36

.blockchain (module), 40
.blockchainobject (module), 43
.cli (module), 17

.account (module), 15
.asset (module), 15
bookie (module), 15
bos (module), 15

cli (module), 15
.committee (module), 15
decorators (module), 15
info (module), 16

main (module), 16
message (module), 16
.proposal (module), 16
rpc (module), 16

ui (module), 16

wallet (module), 17
witness (module), 17

cli

cli

cli

perform_id_tests (peerplays.account.Account at-
tribute), 19
perform_id_tests (peerplays.asset.Asset attribute),

perform _id_tests

25
perform_id_tests (peerplays.bet.Bet attribute), 27
(peer-
plays.bettingmarket. BettingMarket — attribute),

29
(peer-

perform_id_tests

plays.bettingmarketgroup. BettingMarketGroup
attribute), 33

perform_id_tests (peerplays.block.Block at-
tribute), 37

perform_id_tests
attribute), 39

perform_id_tests
plays.blockchainobject. BlockchainObject
attribute), 43

perform_id_tests (peerplays.committee. Committee

attribute), 47

(peerplays.block.BlockHeader

(peer-

perform_id_tests (peerplays.event.Event at-
tribute), 49

perform_id_tests (peer-
plays.eventgroup.EventGroup attribute),
53

perform_id_tests (peer-
plays.genesisbalance.GenesisBalance at-

tribute), 59

perform_id_tests (peerplays.proposal. Proposal at-
tribute), 92

perform_id_tests (peerplays.rule.Rule attribute),
96

perform_id_tests (peerplays.sport.Sport attribute),
100

perform_id_tests (peerplays.witness.Witness at-
tribute), 110

permission_types (peer-
plays.transactionbuilder. TransactionBuilder
attribute), 106

permissions (peerplays.asset.Asset attribute), 25

pop () (peerplays.account.Account method), 19

pop () (peerplays.account.AccountUpdate method), 21

pop () (peerplays.amount.Amount method), 23

pop () (peerplays.asset.Asset method), 25

pop () (peerplays.bet.Bet method), 27

pop () (peerplays.bettingmarket.BettingMarket method),
29

pop () (peerplays.bettingmarket. BettingMarkets
method), 31

pop () (peerplays.bettingmarketgroup.BettingMarketGroup

method), 33

pop () (peerplays.bettingmarketgroup.BettingMarketGroups

method), 35
pop () (peerplays.block.Block method), 37
pop () (peerplays.block.BlockHeader method), 39

pop () (peerplays.blockchainobject.BlockchainObject
method), 43

pop () (peerplays.blockchainobject. BlockchainObjects
method), 45

pop () (peerplays.committee. Committee method), 47

pop () (peerplays.event. Event method), 49

pop () (peerplays.event. Events method), 51

pop () (peerplays.eventgroup. EventGroup method), 53

pop () (peerplays.eventgroup.EventGroups method), 55

pop () (peerplays.genesisbalance.GenesisBalance

146

Index

python-peerplays Documentation, Release 0.1

method), 59 precision (peerplays.asset.Asset attribute), 25
pop () (peerplays.genesisbalance.GenesisBalances prefix (peerplays.peerplays.PeerPlays attribute), 80

method), 60 prefix (peerplays.wallet.Wallet attribute), 108
pop () (peerplays.market.Market method), 65 pretty_print () (in module peerplays.cli.ui), 16
pop () (peerplays.price.FilledOrder method), 83 Price (class in peerplays.price), 85
pop () (peerplays.price.Order method), 85 price (peerplays.price.Order attribute), 85
pop () (peerplays.price.Price method), 87 PriceFeed (class in peerplays.price), 88
pop () (peerplays.price.PriceFeed method), 89 print_permissions () (in module peerplays.cli.ui),
pop () (peerplays.price.UpdateCallOrder method), 90 17
pop () (peerplays.proposal. Proposal method), 92 print_version () (in module peerplays.cli.ui), 17
pop () (peerplays.proposal. Proposals method), 94 privatekey () (peerplays.wallet.Wallet method), 108
pop () (peerplays.rule.Rule method), 96 process_account () (peerplays.notify.Notify
pop () (peerplays.rule.Rules method), 98 method), 70
pop () (peerplays.sport.Sport method), 100 propbuffer (peerplays.peerplays.PeerPlays at-
pop () (peerplays.sport.Sports method), 102 tribute), 80
pop () (peerplays.transactionbuilder. TransactionBuilder Proposal (class in peerplays.proposal), 91

method), 106 proposal () (peerplays.peerplays.PeerPlays method),
pop () (peerplays.witness.Witness method), 110 80
pop () (peerplays.witness.Witnesses method), 112 ProposalBuilder (class in peer-
popitem() (peerplays.account.Account method), 19 plays.transactionbuilder), 103
popitem() (peerplays.account.AccountUpdate Proposals (class in peerplays.proposal), 93

method), 21 proposed_operations (peer-
popitem () (peerplays.amount.Amount method), 23 plays.proposal. Proposal attribute), 92
popitem () (peerplays.asset.Asset method), 25 proposer (peerplays.proposal. Proposal attribute), 92
popitem () (peerplays.bet.Bet method), 277 publickey_from wif () (peerplays.wallet.Wallet
popitem() (peerplays.bettingmarket. BettingMarket method), 108

method), 29
popitem () (peerplays.bettingmarketgroup.BettingMarketBroup

method), 33 refresh () (peerplays.account.Account method), 19
popitem () (peerplays.block.Block method), 37 refresh

()

() (peerplays.asset.Asset method), 25
popitem () (peerplays.block.BlockHeader method), 39 refresh () (peerplays.bet.Bet method), 27
popitem () (peerplays.blockchainobject.BlockchainObject-efresh () (peerplays.bettingmarket.BettingMarket

method), 44 method), 29
popitem() (peerplays.commiitee.Commiitee method), refresh() (peerplays.bettingmarket.BettingMarkets

47 method), 31
popitem() (peerplays.event.Event method), 49 refresh () (peerplays.bettingmarketgroup. BettingMarketGroup
popitem () (peerplays.eventgroup. EventGroup method), 33

method), 53 refresh () (peerplays.bettingmarketgroup.BettingMarketGroups
popitem () (peerplays.genesisbalance.GenesisBalance method), 35

method), 59 refresh () (peerplays.block.Block method), 37
popitem () (peerplays.market.Market method), 65 refresh () (peerplays.block.BlockHeader method), 39
popitem() (peerplays.price.FilledOrder method), 83 refresh () (peerplays.blockchainobject.BlockchainObjects
popitem () (peerplays.price.Order method), 85 method), 45
popitem () (peerplays.price.Price method), 87 refresh () (peerplays.committee. Committee method),
popitem () (peerplays.price.PriceFeed method), 89 47
popitem() (peerplays.price.UpdateCallOrder refresh () (peerplays.event.Event method), 49

method), 90 refresh () (peerplays.event.Events method), 51
popitem() (peerplays.proposal.Proposal method), 92 refresh () (peerplays.eventgroup.EventGroup
popitem () (peerplays.rule.Rule method), 96 method), 53
popitem () (peerplays.sport.Sport method), 100 refresh () (peerplays.eventgroup. EventGroups
popitem () (peerplays.transactionbuilder. TransactionBuilder method), 55

method), 106 refresh () (peerplays.genesisbalance.GenesisBalance
popitem() (peerplays.witness.Witness method), 110 method), 59

pprintOperation () (in module peerplays.cliui), 16 refresh () (peerplays.proposal.Proposal method), 92

Index 147

python-peerplays Documentation, Release 0.1

refresh () (peerplays.proposal. Proposals method), 94
refresh () (peerplays.rule.Rule method), 96
refresh () (peerplays.rule.Rules method), 98
refresh () (peerplays.sport.Sport method), 101
refresh () (peerplays.sport.Sports method), 102
refresh () (peerplays.witness.Witness method), 110
refresh () (peerplays.witness.Witnesses method), 112

register_account () (peer-
plays.peerplays2.PeerPlays method), 82
remove () (peerplays.bettingmarket. BettingMarkets

method), 31

remove () (peerplays.bettingmarketgroup.BettingMarketGroups

method), 35

remove () (peerplays.blockchainobject.BlockchainObjects

method), 45

remove () (peerplays.event.Events method), 51

remove () (peerplays.eventgroup. EventGroups
method), 55

remove () (peerplays.genesisbalance.GenesisBalances
method), 60

remove () (peerplays.proposal. Proposals method), 94

remove () (peerplays.rule.Rules method), 98

remove () (peerplays.sport.Sports method), 102

remove () (peerplays.witness.Witnesses method), 112

removeAccount () (peerplays.wallet.Wallet method),
108

removePrivateKeyFromPublicKey ()
plays.wallet. Wallet method), 108

report_down () (peerplays.son.Son method), 99

request_son_maintenance () (peerplays.son.Son
method), 99

(peer-

resolve () (peerplays.bettingmarketgroup.BettingMarketGgaupcache store ()

method), 33
reverse () (peerplays.bettingmarket.BettingMarkets
method), 31

reverse () (peerplays.bettingmarketgroup.BettingMarketGroups

method), 35

reverse () (peerplays.blockchainobject.BlockchainObjec§et cache store ()

method), 46
reverse () (peerplays.event.Events method), 51
reverse () (peerplays.eventgroup. EventGroups
method), 55
reverse () (peerplays.genesisbalance.GenesisBalances
method), 60
reverse () (peerplays.proposal. Proposals method), 94
reverse () (peerplays.rule.Rules method), 98
reverse () (peerplays.sport.Sports method), 103
reverse () (peerplays.witness.Witnesses method), 112
review_period (peerplays.proposal.Proposal at-
tribute), 92
rpc (peerplays.wallet. Wallet attribute), 108
RPCConnectionRequired, 57
Rule (class in peerplays.rule), 95
RuleDoesNotExistException, 57

Rules (class in peerplays.rule), 97

S

sell () (peerplays.market.Market method), 65
set_blocking () (peerplays.peerplays.PeerPlays
method), 80
set_cache_store ()
static method), 19
set_cache_store () (peerplays.asset.Asset static

(peerplays.account.Account

method), 25

set_cache_store () (peerplays.bet.Bet static
method), 27

set_cache_store () (peer-
plays.bettingmarket. BettingMarket static
method), 29

set_cache_store () (peer-
plays.bettingmarket.BettingMarkets static
method), 31

set_cache_store () (peer-

plays.bettingmarketgroup.BettingMarketGroup
static method), 33

set_cache_store () (peer-
plays.bettingmarketgroup. BettingMarketGroups
static method), 35

set_cache_store () (peerplays.block.Block static
method), 37

set_cache_store () (peerplays.block.BlockHeader
static method), 39

set_cache_store ()
plays.blockchainobject. BlockchainObject
static method), 44

(peer-

(peer-
plays.blockchainobject.BlockchainObjects
static method), 46

set_cache_store () (peer-
plays.committee. Committee static method),
47
(peerplays.event.Event static
method), 49
set_cache_store () (peerplays.event.Events static
method), 51

set_cache_store () (peer-
plays.eventgroup.EventGroup static method),
53

set_cache_store() (peer-
plays.eventgroup. EventGroups static method),
55

set_cache_store()
plays.genesisbalance.GenesisBalance
method), 59

set_cache_store () (peerplays.proposal.Proposal
static method), 92

set_cache_store () (peerplays.proposal.Proposals
static method), 94

(peer-

static

148

Index

python-peerplays Documentation, Release 0.1

set_cache_store () (peerplays.rule.Rule static
method), 96

set_cache_store () (peerplays.rule.Rules static
method), 98

set_cache_store () (peerplays.sport.Sport static
method), 101

set_cache_store () (peerplays.sport.Sports static
method), 103

set_cache_store()
static method), 110

set_cache_store () (peerplays.witness.Witnesses
static method), 112

(peerplays.witness. Witness

set_default_account () (peer-
plays.peerplays.PeerPlays method), 80

set_expiration() (peer-
plays.transactionbuilder. ProposalBuilder
method), 104

set_expiration () (peer-

plays.transactionbuilder. TransactionBuilder
method), 106
set_fee asset () (peer-
plays.transactionbuilder. TransactionBuilder
method), 106
set_parent ()
plays.transactionbuilder. ProposalBuilder
method), 104
set_password()
method), 82
set_password () (peerplays.son.Son method), 99

(peer-

(peerplays.peerplays2.PeerPlays

set_shared_blockchain_instance () (peer-
plays.bettingmarketgroup.BettingMarketGroup
class method), 33

set_shared_blockchain_instance () (peer-
plays.bettingmarketgroup. BettingMarketGroups
class method), 35

set_shared_blockchain_instance () (peer-
plays.block.Block class method), 37
set_shared_blockchain_instance () (peer-

plays.block.BlockHeader class method), 39

set_shared_blockchain_instance () (peer-
plays.blockchain.Blockchain class method),
42

set_shared_blockchain_instance () (peer-

plays.blockchainobject.BlockchainObject class
method), 44

set_shared_blockchain_instance () (peer-
plays.blockchainobject. BlockchainObjects
class method), 46

set_shared_blockchain_instance () (peer-
plays.committee.Committee class method),
47
set_shared_blockchain_instance () (peer-
plays.event.Event class method), 49
set_shared_blockchain_instance () (peer-
plays.event.Events class method), 51
set_shared_blockchain_instance () (peer-

plays.eventgroup.EventGroup class method),
53

set_proposer () (peer- set_shared_blockchain_instance () (peer-
plays.transactionbuilder. ProposalBuilder plays.eventgroup.EventGroups class method),
method), 104 55
set_review () (peer- set_shared_blockchain_instance () (peer-
plays.transactionbuilder. ProposalBuilder plays.genesisbalance.GenesisBalance class
method), 104 method), 59
set_shared_blockchain_instance () (in mod- set_shared_blockchain_instance () (peer-
ule peerplays.instance), 62 plays.genesisbalance.GenesisBalances class
set_shared_blockchain_instance () (peer- method), 61
plays.account.Account class method), 19 set_shared_blockchain_instance () (peer-
set_shared_blockchain_instance () (peer- plays.instance.Blockchainlnstance class
plays.account.AccountUpdate class method), method), 61
21 set_shared_blockchain_instance () (peer-
set_shared_blockchain_instance () (peer- plays.market.Market class method), 66
plays.amount. Amount class method), 23 set_shared_blockchain_instance () (peer-
set_shared_blockchain_instance () (peer- plays.memo.Memo class method), 68
plays.asset.Asset class method), 25 set_shared_blockchain_instance () (peer-
set_shared_blockchain_instance () (peer- plays.message.Message class method), 69
plays.bet.Bet class method), 27 set_shared_blockchain_instance () (peer-
set_shared_blockchain_instance () (peer- plays.price.FilledOrder class method), 83
plays.bettingmarket. BettingMarket class set_shared_blockchain_instance () (peer-
method), 29 plays.price.Order class method), 85
set_shared_blockchain_instance () (peer- set_shared_blockchain_instance () (peer-
plays.bettingmarket. BettingMarkets class plays.price.Price class method), 87
method), 31 set_shared_blockchain_instance () (peer-
Index 149

python-peerplays Documentation, Release 0.1

plays.price.PriceFeed class method), 89
set_shared_blockchain_instance () (peer-
plays.price.UpdateCallOrder class method),
90
set_shared_blockchain_instance () (peer-
plays.proposal. Proposal class method), 92
set_shared_blockchain_instance () (peer-
plays.proposal. Proposals class method), 94

set_shared_blockchain_instance () (peer-
plays.rule.Rule class method), 96
set_shared_blockchain_instance () (peer-
plays.rule.Rules class method), 98
set_shared_blockchain_instance () (peer-
plays.sport.Sport class method), 101
set_shared_blockchain_instance () (peer-
plays.sport.Sports class method), 103
set_shared_blockchain_instance () (peer-

plays.transactionbuilder. ProposalBuilder class
method), 104

set_shared_blockchain_instance () (peer-
plays.transactionbuilder. TransactionBuilder
class method), 106

set_shared_blockchain_instance () (peer-
plays.wallet. Wallet class method), 109

set_shared_blockchain_instance () (peer-
plays.witness.Witness class method), 110

set_shared_blockchain_instance () (peer-

plays.witness.Witnesses class method), 112

set_shared_config() (in module peer-
plays.instance), 62

set_shared_config () (peerplays.account.Account
class method), 19

set_shared_config() (peer-
plays.account.AccountUpdate class method),
21

set_shared_config()
class method), 23

set_shared_config () (peerplays.asset.Asset class

(peerplays.amount. Amount

method), 25

set_shared_config () (peerplays.bet.Bet class
method), 27

set_shared_config() (peer-
plays.bettingmarket. BettingMarket class
method), 29

set_shared_config() (peer-
plays.bettingmarket. BettingMarkets class
method), 31

set_shared_config() (peer-

plays.bettingmarketgroup.BettingMarketGroup
class method), 33

set_shared_config () (peer-
plays.bettingmarketgroup.BettingMarketGroups
class method), 35

set_shared_config () (peerplays.block.Block class

method), 37

set_shared_config() (peer-
plays.block.BlockHeader class method),
39

set_shared_config() (peer-
plays.blockchain.Blockchain class method),
42

set_shared_config () (peer-

plays.blockchainobject.BlockchainObject
class method), 44

set_shared_config () (peer-
plays.blockchainobject. BlockchainObjects
class method), 46

set_shared_config() (peer-
plays.committee. Committee class method),
47

set_shared_config () (peerplays.event.Event class
method), 49

set_shared_config()
class method), 51

set_shared_config() (peer-
plays.eventgroup.EventGroup class method),
53

set_shared_config () (peer-

plays.eventgroup.EventGroups class method),
55

(peerplays.event. Events

set_shared_config() (peer-
plays.genesisbalance.GenesisBalance class
method), 59

set_shared_config() (peer-
plays.genesisbalance.GenesisBalances class
method), 61

set_shared_config() (peer-
plays.instance.Blockchainlnstance class

method), 61
set_shared_config()
class method), 66
set_shared_config()
class method), 68
set_shared_config () (peer-
plays.message.Message class method), 69
set_shared_config() (peer-
plays.price.FilledOrder class method), 83
set_shared_config () (peerplays.price.Order class
method), 85
set_shared_config () (peerplays.price.Price class
method), 88
set_shared_config()
class method), 89
set_shared_config() (peer-
plays.price.UpdateCallOrder class method),
90
set_shared_config()
plays.proposal. Proposal

(peerplays.market.Market

(peerplays.memo.Memo

(peerplays.price.PriceFeed

(peer-

class method),

150

Index

python-peerplays Documentation, Release 0.1

92

set_shared_config() (peer-
plays.proposal.Proposals class method),
94

set_shared_config () (peerplays.rule.Rule class
method), 96

set_shared_config () (peerplays.rule.Rules class
method), 98

set_shared_config () (peerplays.sport.Sport class
method), 101

set_shared_config() (peerplays.sport.Sports
class method), 103
set_shared_config() (peer-

plays.transactionbuilder. ProposalBuilder
class method), 104
set_shared_config() (peer-
plays.transactionbuilder. TransactionBuilder
class method), 106
set_shared_config()
class method), 109
set_shared_config()
class method), 110
set_shared_config() (peer-
plays.witness.Witnesses class method), 112

(peerplays.wallet. Wallet

(peerplays.witness.Witness

set_shared_instance () (peer-
plays.account.Account method), 19

set_shared_instance () (peer-
plays.account.AccountUpdate method), 21

set_shared_instance () (peer-

plays.amount. Amount method), 23
set_shared_instance () (peerplays.asset.Asset

method), 25

set_shared_instance () (peerplays.bet.Bet
method), 27

set_shared_instance () (peer-
plays.bettingmarket.BettingMarket ~ method),
29

set_shared_instance () (peer-
plays.bettingmarket. BettingMarkets — method),
31

set_shared_instance () (peer-

plays.bettingmarketgroup.BettingMarketGroup
method), 33

set_shared_instance () (peer-
plays.bettingmarketgroup.BettingMarketGroups

method), 44
set_shared_instance () (peer-
plays.blockchainobject. BlockchainObjects
method), 46
set_shared_instance ()
plays.committee. Committee method), 47
set_shared_instance () (peerplays.event.Event
method), 49
set_shared_instance ()
method), 51
set_shared_instance () (peer-
plays.eventgroup. EventGroup method), 53

(peer-

(peerplays.event. Events

set_shared_instance () (peer-
plays.eventgroup. EventGroups method),
55

set_shared_instance () (peer-

plays.genesisbalance.GenesisBalance method),
59

set_shared_instance () (peer-
plays.genesisbalance.GenesisBalances
method), 61

set_shared_instance () (peer-
plays.instance.Blockchainlnstance ~ method),
61

set_shared_instance () (peer-

plays.market.Market method), 66
set_shared_instance () (peerplays.memo.Memo
method), 68

set_shared_instance () (peer-
plays.message.Message method), 69

set_shared_instance () (peer-
plays.peerplays.PeerPlays method), 80

set_shared_instance () (peer-

plays.price.FilledOrder method), 83
set_shared_instance () (peerplays.price.Order

method), 85

set_shared_instance () (peerplays.price.Price
method), 88

set_shared_instance () (peer-

plays.price.PriceFeed method), 89
set_shared_instance () (peer-
plays.price.UpdateCallOrder method), 90

set_shared_instance () (peer-
plays.proposal. Proposal method), 92
set_shared_instance () (peer-

method), 35 plays.proposal. Proposals method), 94

set_shared_instance () (peerplays.block.Block set_shared_instance () (peerplays.rule.Rule
method), 37 method), 96

set_shared_instance () (peer- set_shared_instance () (peerplays.rule.Rules
plays.block.BlockHeader method), 39 method), 98

set_shared_instance () (peer- set_shared_instance () (peerplays.sport.Sport
plays.blockchain.Blockchain method), 42 method), 101

set_shared_instance () (peer- set_shared_instance () (peerplays.sport.Sports
plays.blockchainobject. BlockchainObject method), 103

Index 151

python-peerplays Documentation, Release 0.1

set_shared_instance () (peer-
plays.transactionbuilder. ProposalBuilder
method), 104

set_shared_instance () (peer-

plays.transactionbuilder. TransactionBuilder

method), 106
set_shared_instance () (peerplays.wallet.Wallet
method), 109
set_shared_instance () (peer-
plays.witness.Witness method), 110
set_shared_instance () (peer-
plays.witness.Witnesses method), 113
set_shared_peerplays_instance () (in mod-

ule peerplays.instance), 62
set_status () (peerplays.event.Event method), 49
setdefault () (peerplays.account.Account method),

19

setdefault () (peerplays.account.AccountUpdate
method), 21

setdefault () (peerplays.amount.Amount method),
23

setdefault () (peerplays.asset.Asset method), 25
setdefault () (peerplays.bet.Bet method), 277

setdefault () (peer-
plays.bettingmarket. BettingMarket ~ method),
29

setdefault () (peer-
plays.bettingmarketgroup.BettingMarketGroup
method), 33

setdefault () (peerplays.block.Block method), 37

setdefault () (peerplays.block.BlockHeader
method), 39

setdefault ()
plays.blockchainobject. BlockchainObject
method), 44

setdefault ()
method), 47

setdefault () (peerplays.event.Event method), 50

setdefault () (peerplays.eventgroup. EventGroup
method), 53

setdefault () (peer-
plays.genesisbalance.GenesisBalance method),
59

setdefault () (peerplays.market.Market method), 66

(peer-

(peerplays.committee. Committee

setdefault () (peerplays.rule.Rule method), 96

setdefault () (peerplays.sport.Sport method), 101

setdefault () (peer-
plays.transactionbuilder. TransactionBuilder
method), 106

setdefault () (peerplays.witness.Witness method),
110

setKeys () (peerplays.wallet.Wallet method), 108

shared_blockchain_instance () (in module
peerplays.instance), 62

shared_blockchain_instance () (peer-
plays.account.Account method), 19
shared_blockchain_instance () (peer-

plays.account.AccountUpdate method), 21

shared_blockchain_instance () (peer-
plays.amount. Amount method), 23

shared_blockchain_instance () (peer-
plays.asset.Asset method), 25

shared_blockchain_instance () (peer-
plays.bet.Bet method), 277

shared_blockchain_instance () (peer-
plays.bettingmarket. BettingMarket ~ method),
29

shared_blockchain_instance () (peer-
plays.bettingmarket. BettingMarkets — method),
31

shared_blockchain_instance () (peer-

plays.bettingmarketgroup.BettingMarketGroup
method), 33

shared_blockchain_instance () (peer-
plays.bettingmarketgroup.BettingMarketGroups
method), 35

shared_blockchain_instance () (peer-
plays.block.Block method), 37

shared_blockchain_instance () (peer-
plays.block.BlockHeader method), 39

shared_blockchain_instance () (peer-

plays.blockchain.Blockchain method), 42
shared_blockchain_instance ()
plays.blockchainobject. BlockchainObject
method), 44
shared_blockchain_instance () (peer-
plays.blockchainobject. BlockchainObjects
method), 46

(peer-

setdefault () (peerplays.price.FilledOrder method), shared_blockchain_instance () (peer-
83 plays.committee. Committee method), 48

setdefault () (peerplays.price.Order method), 85 shared_blockchain_instance () (peer-

setdefault () (peerplays.price.Price method), 88 plays.event. Event method), 50

setdefault () (peerplays.price.PriceFeed method), shared_blockchain_instance () (peer-
89 plays.event.Events method), 52

setdefault () (peerplays.price.UpdateCallOrder shared_blockchain_instance () (peer-
method), 91 plays.eventgroup. EventGroup method), 53

setdefault () (peerplays.proposal. Proposal shared_blockchain_instance () (peer-
method), 92 plays.eventgroup. EventGroups method),

152 Index

python-peerplays Documentation, Release 0.1

55

shared_blockchain_instance () (peer-
plays.genesisbalance.GenesisBalance method),
59

shared_blockchain_instance () (peer-
plays.genesisbalance.GenesisBalances
method), 61
shared_blockchain_instance () (peer-
plays.instance.BlockchainInstance ~ method),
61
shared_blockchain_instance () (peer-
plays.market.Market method), 66
shared_blockchain_instance () (peer-
plays.memo.Memo method), 68
shared_blockchain_instance () (peer-
plays.message.Message method), 69
shared_blockchain_instance () (peer-
plays.price.FilledOrder method), 84
shared_blockchain_instance () (peer-
plays.price.Order method), 85
shared_blockchain_instance () (peer-
plays.price.Price method), 88
shared_blockchain_instance () (peer-
plays.price.PriceFeed method), 89
shared_blockchain_instance () (peer-

plays.price.UpdateCallOrder method), 91

shared_blockchain_instance () (peer-
plays.proposal. Proposal method), 92
shared_blockchain_instance () (peer-
plays.proposal. Proposals method), 95
shared_blockchain_instance () (peer-
plays.rule.Rule method), 96
shared_blockchain_instance () (peer-
plays.rule.Rules method), 98
shared_blockchain_instance () (peer-
plays.sport.Sport method), 101
shared_blockchain_instance () (peer-
plays.sport.Sports method), 103
shared_blockchain_instance () (peer-
plays.transactionbuilder. ProposalBuilder
method), 104
shared_blockchain_instance () (peer-

plays.transactionbuilder. TransactionBuilder
method), 106

shared_blockchain_instance () (peer-
plays.wallet. Wallet method), 109

shared_blockchain_instance () (peer-
plays.witness. Witness method), 110

shared_blockchain_instance () (peer-

plays.witness.Witnesses method), 113
shared_peerplays_instance () (in module peer-
plays.instance), 62
SharedInstance (class in peerplays.instance), 61
sidechain_deposit_transaction () (peer-

plays.son.Son method), 99
sidechain_withdrawal_transaction ()
(peerplays.son.Son method), 99
sign () (peerplays.message.Message method), 69
sign () (peerplays.peerplays.PeerPlays method), 80
sign () (peerplays.transactionbuilder. TransactionBuilder
method), 106

SIGNED_MESSAGE_ENCAPSULATED (peer-
plays.message.Message attribute), 69
SIGNED_MESSAGE_META (peer-

plays.message.Message attribute), 69
Son (class in peerplays.son), 98

sort () (peerplays.bettingmarket. BettingMarkets
method), 32

sort () (peerplays.bettingmarketgroup.BettingMarketGroups
method), 35

sort () (peerplays.blockchainobject. BlockchainObjects
method), 46

sort () (peerplays.event. Events method), 52

sort () (peerplays.eventgroup.EventGroups method),
55

sort () (peerplays.genesisbalance.GenesisBalances
method), 61

sort () (peerplays.proposal. Proposals method), 95

sort () (peerplays.rule.Rules method), 98

sort () (peerplays.sport.Sports method), 103

sort () (peerplays.witness.Witnesses method), 113

space_id (peerplays.account.Account attribute), 19

space_id (peerplays.asset.Asset attribute), 25

space_id (peerplays.bet.Bet attribute), 28

space_id (peerplays.bettingmarket.BettingMarket at-
tribute), 30

space_id (peerplays.bettingmarketgroup.BettingMarketGroup
attribute), 33

space_id (peerplays.block.Block attribute), 37

space_id (peerplays.block.BlockHeader attribute), 39

space_id (peerplays.blockchainobject.BlockchainObject
attribute), 44

space_id (peerplays.committee.Committee attribute),
48

space_id (peerplays.event.Event attribute), 50

space_id (peerplays.eventgroup.EventGroup at-
tribute), 53

space_id (peerplays.genesisbalance.GenesisBalance
attribute), 59

space_id (peerplays.proposal. Proposal attribute), 93

space_id (peerplays.rule.Rule attribute), 96

space_id (peerplays.sport.Sport attribute), 101

space_id (peerplays.witness.Witness attribute), 111

Sport (class in peerplays.sport), 99

sport (peerplays.eventgroup.EventGroup attribute), 53

sport_create () (peerplays.peerplays.PeerPlays
method), 80

sport_delete () (peerplays.peerplays.PeerPlays

Index

153

python-peerplays Documentation, Release 0.1

method), 80
sport_update ()

method), 80
SportDoesNotExistException, 57
Sports (class in peerplays.sport), 101
sports (peerplays.sport.Sports attribute), 103

(peerplays.peerplays.PeerPlays

store () (peerplays.account.Account method), 19

store () (peerplays.asset.Asset method), 26

store () (peerplays.bet.Bet method), 28

store () (peerplays.bettingmarket. BettingMarket
method), 30

store () (peerplays.bettingmarket. BettingMarkets
method), 32

store () (peerplays.bettingmarketgroup.BettingMarketGroup

method), 33

store () (peerplays.bettingmarketgroup.BettingMarketGreups+ 311d ob jectid ()

method), 35
store () (peerplays.block.Block method), 37
store () (peerplays.block.BlockHeader method), 39
store () (peerplays.blockchainobject. BlockchainObject

method), 44

store () (peerplays.blockchainobject. BlockchainObjects
method), 46

store () (peerplays.committee. Committee method), 48

store () (peerplays.event.Event method), 50

store () (peerplays.event.Events method), 52

store () (peerplays.eventgroup.EventGroup method),
53

store () (peerplays.eventgroup.EventGroups method),
55

store () (peerplays.genesisbalance.GenesisBalance
method), 59

store () (peerplays.proposal.Proposal method), 93

store () (peerplays.proposal.Proposals method), 95

store () (peerplays.rule.Rule method), 96

store () (peerplays.rule.Rules method), 98

store () (peerplays.sport.Sport method), 101

store () (peerplays.sport.Sports method), 103

store () (peerplays.witness.Witness method), 111

store () (peerplays.witness.Witnesses method), 113

stream () (peerplays.blockchain.Blockchain method),

42
suggest_brain_key ()
plays.peerplays2.PeerPlays method), 82
supported_formats (peerplays.message.Message
attribute), 69
symbol (peerplays.amount.Amount attribute), 23
symbol (peerplays.asset.Asset attribute), 26
symbols () (peerplays.price.FilledOrder method), 84
symbols () (peerplays.price.Order method), 85
symbols () (peerplays.price.Price method), 88

(peer-

T

test_proposal_in_buffer ()
plays.utils), 107

test_valid_objectid()
plays.account.Account method), 20

test_valid_objectid() (peerplays.asset.Asset

(in module peer-

(peer-

method), 26
test_valid_objectid() (peerplays.bet.Bet
method), 28
test_valid_objectid() (peer-
plays.bettingmarket. BettingMarket ~ method),
30
test_valid_objectid() (peer-
plays.bettingmarketgroup.BettingMarketGroup
method), 34
(peerplays.block.Block
method), 37
test_valid_objectid() (peer-

plays.block.BlockHeader method), 39
test_valid_objectid()
plays.blockchainobject. BlockchainObject
method), 44
test_valid_objectid()
plays.committee. Committee method), 48
test_valid_objectid () (peerplays.event.Event
method), 50
test_valid_objectid() (peer-
plays.eventgroup. EventGroup method), 53
test_valid_objectid() (peer-
plays.genesisbalance.GenesisBalance method),

59

(peer-

(peer-

test_valid_objectid() (peer-
plays.proposal. Proposal method), 93

test_valid_objectid() (peerplays.rule.Rule
method), 96

test_valid_objectid() (peerplays.sport.Sport
method), 101

test_valid_objectid() (peer-

plays.witness.Witness method), 111
testid () (peerplays.account.Account method), 20
testid () (peerplays.asset.Asset method), 26
testid () (peerplays.bet.Bet method), 28
testid() (peerplays.bettingmarket. BettingMarket
method), 30

testid () (peerplays.bettingmarketgroup.BettingMarketGroup

method), 34
testid () (peerplays.block.Block method), 37
testid () (peerplays.block.BlockHeader method), 39
testid () (peerplays.blockchainobject. BlockchainObject
method), 44
testid () (peerplays.committee.Committee method),

symbols () (peerplays.price.UpdateCallOrder 48
method), 91 testid () (peerplays.event.Event method), 50
testid () (peerplays.eventgroup.EventGroup method),
154 Index

python-peerplays Documentation, Release 0.1

54
testid () (peerplays.genesisbalance.GenesisBalance
method), 59

testid () (peerplays.proposal.Proposal method), 93
testid () (peerplays.rule.Rule method), 96
testid () (peerplays.sport.Sport method), 101
testid () (peerplays.witness.Witness method), 111

ticker () (peerplays.market.Market method), 66

time () (peerplays.block.Block method), 38

time () (peerplays.block.BlockHeader method), 39

to_buy (peerplays.price.Order attribute), 85

trades () (peerplays.market.Market method), 67

TransactionBuilder (class in
plays.transactionbuilder), 104

transfer () (peerplays.peerplays.PeerPlays method),
81

tuple () (peerplays.amount.Amount method), 23

tx () (peerplays.peerplays.PeerPlays method), 81

txbuffer (peerplays.peerplays.PeerPlays attribute),
81

type_id (peerplays.account.Account attribute), 20

type_id (peerplays.asset.Asset attribute), 26

type_id (peerplays.bet.Bet attribute), 28

type_id (peerplays.bettingmarket.BettingMarket at-
tribute), 30

peer-

type_ids (peerplays.event.Event attribute), 50

type_ids (peerplays.eventgroup.EventGroup
tribute), 54

type_ids (peerplays.genesisbalance.GenesisBalance
attribute), 59

type_ids (peerplays.proposal. Proposal attribute), 93

type_ids (peerplays.rule.Rule attribute), 97

type_ids (peerplays.sport.Sport attribute), 101

type_ids (peerplays.witness.Witness attribute), 111

U

unlock ()

unlock ()

unlock ()
82

unlock () (peerplays.son.Son method), 99

unlock () (peerplays.wallet.Wallet method), 109

unlock_wallet () (peerplays.memo.Memo method),
69

unlocked () (peerplays.wallet.Wallet method), 109

unlockWallet () (in module peer-
plays.cli.decorators), 16

update () (peerplays.account.Account method), 20

update () (peerplays.account.AccountUpdate method),
21

at-

(in module peerplays.cli.decorators), 16
(peerplays.peerplays. PeerPlays method), 81
(peerplays.peerplays2.PeerPlays method),

type_id (peerplays.bettingmarketgroup.BettingMarketGroypate () (peerplays.amount.Amount method), 23

attribute), 34
type_id (peerplays.block.Block attribute), 38
type_id (peerplays.block.BlockHeader attribute), 39
type_id (peerplays.blockchainobject.BlockchainObject
attribute), 44
type_id (peerplays.committee. Committee attribute), 48
type_id (peerplays.event.Event attribute), 50
type_id (peerplays.eventgroup.EventGroup attribute),
54
type_id (peerplays.genesisbalance.GenesisBalance at-
tribute), 59
type_id (peerplays.proposal. Proposal attribute), 93
type_id (peerplays.rule.Rule attribute), 97
type_id (peerplays.sport.Sport attribute), 101
type_id (peerplays.witness.Witness attribute), 111
type_ids (peerplays.account.Account attribute), 20
type_ids (peerplays.asset.Asset attribute), 26
type_ids (peerplays.bet.Bet attribute), 28
type_ids (peerplays.bettingmarket.BettingMarket at-
tribute), 30

attribute), 34
type_ids (peerplays.block.Block attribute), 38
type_ids (peerplays.block.BlockHeader attribute), 39

(
(
(
type_ids (peerplays.bettingmarketgroup.BettingMarketGygipat e (
(
(

(

update () (peerplays.asset.Asset method), 26

update () (peerplays.bet.Bet method), 28

update () (peerplays.bettingmarket. BettingMarket
method), 30

update () (peerplays.bettingmarketgroup.BettingMarketGroup
method), 34

update () (peerplays.block.Block method), 38

update () (peerplays.block.BlockHeader method), 39

update () (peerplays.blockchainobject. BlockchainObject
method), 44

update () (peerplays.committee.Committee method),
48

update () (peerplays.event.Event method), 50

update () (peerplays.eventgroup.EventGroup method),
54

update () (peerplays.genesisbalance.GenesisBalance
method), 59

(peerplays.market.Market method), 67

(peerplays.price.FilledOrder method), 84

(peerplays.price.Order method), 85

(peerplays.price.Price method), 88

(peerplays.price.PriceFeed method), 89

(peerplays.price.UpdateCallOrder method),

update
update
update

update
update

—_— — — — — —

91

type_1ids (peerplays.blockchainobject.BlockchainObject ypdate () (peerplays.proposal.Proposal method), 93

attribute), 44
type_ids (peerplays.committee. Committee attribute),
48

(peerplays.rule.Rule method), 97

)
update ()
) (peerplays.sport.Sport method), 101

update (

Index

155

python-peerplays Documentation, Release 0.1

update () (peerplays.transactionbuilder. TransactionBuildera1lues () (peerplays.witness.Witness method), 111

method), 107
update () (peerplays.witness.Witness method), 111
update_cer () (peerplays.asset.Asset method), 26

update_chain_parameters () (peer-
plays.blockchain.Blockchain method), 42
update_memo_key () (peer-

plays.peerplays.PeerPlays method), 81
update_son () (peerplays.son.Son method), 99
update_son_votes () (peerplays.son.Son method),

99
update_witness_votes ()

method), 99
UpdateCallOrder (class in peerplays.price), 89
upgrade () (peerplays.account.Account method), 20
upgrade_account () (peer-

plays.peerplays.PeerPlays method), 81

(peerplays.son.Son

Vv

valid_exceptions (peerplays.message.Message at-
tribute), 70

values () (peerplays.account.Account method), 20

values () (peerplays.account.AccountUpdate method),
21

values () (peerplays.amount.Amount method), 23

values () (peerplays.asset.Asset method), 26

values () (peerplays.bet.Bet method), 28

values () (peerplays.bettingmarket. BettingMarket
method), 30

values () (peerplays.bettingmarketgroup.BettingMarketGroup

method), 34
values () (peerplays.block.Block method), 38
values () (peerplays.block.BlockHeader method), 40

values () (peerplays.blockchainobject.BlockchainObject

method), 44

values () (peerplays.committee.Committee method),
48

values () (peerplays.event.Event method), 50

values () (peerplays.eventgroup.EventGroup method),
54

values () (peerplays.genesisbalance.GenesisBalance

method), 60

values () (peerplays.market.Market method), 67

values () (peerplays.price.FilledOrder method), 84

values () (peerplays.price.Order method), 85

values () (peerplays.price.Price method), 88

values () (peerplays.price.PriceFeed method), 89

values () (peerplays.price.UpdateCallOrder method),
91

values () (peerplays.proposal.Proposal method), 93
values () (peerplays.rule.Rule method), 97
(
(

values () (peerplays.sport.Sport method), 101

values () (peerplays.transactionbuilder. TransactionBuilderi th_traceback ()

method), 107

verbose () (in module peerplays.cli.decorators), 16

verify () (peerplays.message.Message method), 70

verify_authority () (peer-
plays.transactionbuilder. TransactionBuilder
method), 107

volume24h () (peerplays.market.Market method), 67

vote_for_son () (peerplays.son.Son method), 99

vote_for_witness () (peerplays.son.Son method),
99

W

wait_for_and_get_block ()
plays.blockchain.Blockchain method), 42
Wallet (class in peerplays.wallet), 107
wallet_server () (peerplays.peerplays2.PeerPlays
method), 82
wallet_server_start ()
plays.peerplays2.PeerPlays method), 82
WalletCall () (in module peerplays.son), 99
WalletCall () (peerplays.peerplays2.PeerPlays
method), 81
weight (peerplays.witness.Witness attribute), 111
whitelist () (peerplays.account.Account method), 20
wipe () (peerplays.wallet.Wallet method), 109
with_traceback ()
plays.exceptions.AccountExistsException
method), 56

(peer-

(peer-

(peer-

with_traceback () (peer-
plays.exceptions.BetDoesNotExistException
method), 56

with_traceback () (peer-

plays.exceptions.BettingMarketDoesNotExistException
method), 56

with_traceback () (peer-

plays.exceptions.BettingMarketGroupDoesNotExistException

method), 56
with_traceback () (peer-
plays.exceptions.EventDoesNotExistException
method), 56
with_traceback () (peer-
plays.exceptions. EventGroupDoesNotEXxistException
method), 56
with_traceback ()

(peer-

plays.exceptions.GenesisBalanceDoesNotExistsException

method), 57

with_traceback () (peer-
plays.exceptions.InsufficientAuthorityError
method), 57

with_traceback () (peer-
plays.exceptions.ObjectNotInProposalBuffer
method), 57

(peer-

plays.exceptions.RPCConnectionRequired

156

Index

python-peerplays Documentation, Release 0.1

method), 57

with_traceback () (peer-
plays.exceptions.RuleDoesNotExistException
method), 57

with_traceback () (peer-
plays.exceptions.SportDoesNotExistException
method), 57

with_traceback () (peer-
plays.exceptions.WrongMasterPasswordException
method), 57

Witness (class in peerplays.witness), 109

Witnesses (class in peerplays.witness), 111

WrongMasterPasswordException, 57

Index

157

	About this Library
	Quickstart
	General
	Command Line Tool
	Packages
	Tutorials
	Indices and tables
	Python Module Index
	Index

